Fasteners for Use in Structural Applications
INTENTIONALLY LEFT BLANK
This Standard will be revised when the Society approves the issuance of a new edition. There will be no addenda issued to this edition.

ASME issues written replies to inquiries concerning interpretations of technical aspects of this Standard. Periodically certain actions of the ASME B18 Committee may be published as Cases. Cases and interpretations are published on the ASME Web site under the Committee Pages at http://cstools.asme.org as they are issued.

ASME is the registered trademark of The American Society of Mechanical Engineers.

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not “approve,” “rate,” or “endorse” any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assumes any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

The American Society of Mechanical Engineers
Three Park Avenue, New York, NY 10016-5990

Copyright © 2010 by
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
All rights reserved
Printed in U.S.A.
CONTENTS

Foreword ... iv
Committee Roster .. vi
Correspondence With the B18 Committee vii
1 Introductory Notes ... 1
2 Heavy Hex Structural Bolts: ASTM A 325 and ASTM A 490 .. 2
3 Heavy Hex Nuts: ASTM A 563 and ASTM A 194 5
4 Hardened Steel Washers ... 7
5 Compressible Washer-Type Direct Tension Indicators 10
6 Twist-Off-Type Tension Control Structural Bolts: Heavy Hex and Round:
 ASTM F 1852 and ASTM F 2280 10

Figure
1 Groove Diameter .. 13

Tables
1 Dimensions of Heavy Hex Structural Bolts 2
2 Maximum Grip Gaging Lengths and Minimum Body Lengths for Heavy Hex
 Structural Bolts ... 4
3 Dimensions of Heavy Hex Nuts for Use With Structural Bolts 6
4 Dimensions for Hardened Steel Circular and Circular Clipped Washers 8
5 Dimensions of Hardened Beveled Washers With Slope or Taper in Thickness 1:6 9
6 Dimensions for Compressible Washer-Type Direct Tension Indicators 11
7 Dimensions of Twist-Off-Type Tension Control Structural Bolts: Heavy Hex Head
 and Round Head Configurations 12
FOREWORD

The B18 Standards Committee for the standardization of bolts, screws, nuts, rivets, and similar fasteners was organized in March 1922 as the B18 Sectional Committee under the aegis of the American Engineering Standards Committee (later the American Standards Association, then the United States of America Standards Institute and, as of October 6, 1969, the American National Standards Institute, Inc.), with the Society of Automotive Engineers and the American Society of Mechanical Engineers as joint sponsors. B18 Subcommittee 2 was subsequently established and charged with the responsibility for technical content of standards covering wrench head bolts and nuts.

Subcommittee 2, after appraisal of the requirements of industry, developed a proposed standard series of bolt head and nut dimensions. This proposal was finally approved and designated a Tentative American Standard in February 1927.

A first revision of the document was designated as an American Standard in March 1933, and was followed by a second revision, which was granted approval as an American Standard in January 1941.

Following reorganization of the B18 Committee in 1947, Subcommittee 2 was asked to expand the Standard on head proportions into a complete product standard. A proposal covering square and hexagon head bolts and nuts, hexagon head cap screws, and automotive hexagon head bolts was prepared and submitted to the B18 Committee in April 1950. While this draft was under consideration, the B18 Committee received a proposal from the British Standards Institution for unification of dimensions on products incorporating unified screw threads. The Committee welcomed the opportunity of discussing the proposals and an American-British-Canadian Conference was held in New York, June 1 and 2, 1950.

It was agreed in the Conference that the essentials of unification could be accomplished by selection of mutually satisfactory across-the-flats dimensions, since this would permit the use of the same wrenches and because other features would rarely affect interchangeability. After due consideration, suitable existing across-the-flats dimensions were selected for the hexagon products.

In its meeting on October 13, 1950, Subcommittee 2 agreed to incorporate in the proposed standard the conference recommendations on 1/4 in. hexagon head bolts, 5/8 in. hexagon head cap screws and automotive hexagon head bolts, 3/16 in. and 3/8 in. regular hexagon and square nuts, and 7/16 in. light and regular hexagon and square nuts. At a subsequent meeting of Subcommittee 2, further changes were adopted in order to combine the light and regular series of nuts and to combine the automotive hexagon head bolt, hexagon head cap screw, and regular hexagon head close tolerance bolt.

In view of the progress made in the United States and the urgency of standardization for mutual defense, the British Standards Institution sponsored a second Conference in London in April 1951 to complete the unification of certain hexagon bolts and nuts.

At a meeting on June 8, 1951, Subcommittee 2 reaffirmed its acceptance of the unified dimensions, which corresponded with those in the March 1951 draft, but attempted to select better nomenclature for the unified products. A final draft incorporating the nomenclature Finished Hexagon Bolts and Nuts and containing numerous editorial changes was submitted for letter ballot in September 1951. Following approval by the B18 Committee and the sponsors, the proposal was presented to the American Standards Association for approval and designation as an American Standard. This was granted on March 24, 1952.

Recognizing the Standard was in need of additional refinements, Subcommittee 2 began immediately to revise it: removing inconsistencies with respect to fillets, improving the length tolerances on heavy hexagon bolts, and incorporating numerous other corrections and clarifications. The most noteworthy editorial change was a decision to combine the coverage for hexagon cap screws and square head set screws from the B18.2 Standard with the coverage for slotted head cap screws and slotted headless set screws from the B18.6 Standard and publish them in a separate
document. The requirements for the unified hexagon cap screws and finished hexagon bolts being identical in the overlapping sizes, this data would now be available in two publications. Following approvals by the B18 Committee and sponsor organizations, the proposal was submitted to the American Standards Association and declared an American Standard on February 2, 1955.

A revision of this document comprised of numerous editorial corrections and inclusions of an appendix for grade markings was duly approved and designated an American Standard on April 18, 1960.

At a meeting in February 1960, Subcommittee 2 approved a recommendation to reduce the head heights for heavy, heavy semifinished, and heavy finished hexagon bolts which was subsequently approved by letter ballot of the B18 Committee on August 16, 1960. A proposed standard for heavy hexagon structural bolts submitted and accepted by Subcommittee 2 at its October 17, 1960 meeting was approved by letter ballot of the B18 Committee on May 9, 1961. To meet the urgent needs of the steel construction industry, it was considered necessary to publish the Standard for the structural bolts immediately. Consequently, Appendix IV to ASA B18.2-1960 containing coverage for the revised heavy hexagon bolts and the new heavy hexagon structural bolts was released in 1962.

In October of 1961, Subcommittee 2 appointed a subgroup to review all product standards for square and hexagon bolts, screws, and nuts, and to recommend simplifications which would be compatible with technical, production, and distribution advances that had occurred over the prior several years. The subgroup presented its recommendations at a meeting of Subcommittee 2 in October 1962. It was agreed that the internally and externally threaded products should be published in separate documents as suggested, and draft proposals for each were completed.

The proposed revision for square and hex bolts and screws incorporated the following subgroup recommendations: consolidation of hexagon head cap screws and finished hexagon bolts into a single product, consolidation of heavy semifinished hexagon bolts and heavy finished hexagon bolts into a single product, elimination of regular semifinished hexagon bolts, new length tolerancing values for all bolts and screws, documentation of a positive identification procedure for determining whether an externally threaded product should properly be designated a bolt or a screw, and an abbreviated and purified set of product nomenclature reflecting application of the identification procedure. Letter ballot of this proposal to the B18 Committee in March 1964 resulted in several comments, which were resolved to the satisfaction of the Committee in June 1964. Following acceptance by the sponsor organizations, the revision was submitted to the American Standards Association and was designated American Standard ASA B18.2.1 on September 8, 1965.

Subcommittee 2 in 1992 recognized the value of having all structural products in a single standard. In a revision initiated for the B18.2.1 Standard in that year, it was proposed to remove the heavy hex structural bolt from the B18.2.1 Standard, the heavy hex nut from the B18.2.2 Standard and combine these with the dimensions of hardened steel washers from ASTM F 436 and the compressible-washer-type direct tension indicator dimensions of ASTM F 959. This new Standard would then provide all standardized dimensions for the fasteners intended for use in structural applications. The first draft of this Standard was submitted to Subcommittee 2 at its May 1993 meeting. It was subsequently approved as an American National Standard on December 4, 1996.

In December of 2008 the B18.2 Subcommittee agreed to begin the updating of ASME B18.2.6. The document’s format was revised to meet the new guidelines for B18 Standards. The inside diameters of the hardened washer were revised to match the revised size indicated in ASTM F 436. An alternative design for the 5/8 in. size compressible-washer-type direct tension indicator was introduced to simplify production tooling for some washer manufacturers. References to platings and coatings in the various product sections were removed and the users of this Standard are directed to the appropriate ASTM material standard to determine finish requirements in addition to other physical and mechanical properties. The quality assurance section was simplified by removing the reference to ASME B18.18.1 and the list of designated inspection characteristics. Instead, users are directed to ASME B18.18.2 for the quality assurance requirements and sampling plans for all product characteristics.

The revision of Section 2.1.6, Bearing Surface, was the final resolved issue. It was learned that a significant amount of ASTM A 325 and A 490 bolts have always been produced by the hot
heading method, which leaves a die seam across the bolt bearing surface. A sentence was added to the section specifically stating that die seams are permissible. Even though no problems had ever been reported relative to the presence of the die seams, one concerned party raised an objection to the addition of this statement. It was decided that this issue should be resolved by conducting a testing program to objectively determine if die seams on structural bolt bearing surfaces cause any detrimental performance in application. Several lots of ASTM A 325 and A 490 bolts were tested in an ISO 17025 accredited laboratory. Bolts and nuts were assembled in tension testing equipment with the tightening torque applied through the rotation of the nut in one set of lots and then by rotating the bolts by their heads in another series of lots. An 88 page report was created, including details on the testing of all lots, bolt chemical and physical certificates, photographs of each stage of testing, and the accreditation certificate for the testing laboratory. The report was submitted to Professor Emeritus Dr. John Fisher of Lehigh University for review and comment. In his conclusion Dr. Fisher stated, “Hence I do not see any reason to consider the installation of bolts with or without seams to differ in achieving the desired preload thereby providing the desired slip resistance. The torque variability is consistent with past studies. Seams are not a significant factor as demonstrated by this study.” The Standard was published containing the statement permitting die seams on structural bolt bearing surfaces.

This edition was approved by the American National Standards Institute on July 8, 2010.
ASME B18 COMMITTEE
Standardization of Bolts, Nuts, Rivets, Screws, Washers, and Similar Fasteners

(The following is the roster of the Committee at the time of approval of this Standard.)

STANDARDS COMMITTEE OFFICERS

J. Greenslade, Chair
D. S. George, Vice Chair
R. D. Strong, Vice Chair
C. J. Gomez, Secretary

STANDARDS COMMITTEE PERSONNEL

V. Cartina, Consultant
D. A. Clever, Consultant
A. P. Cockman, Ford Motor Co.
C. A. Dugal, TSP
J. S. Foote, Contributing Member, Trade Association Management, Inc.
C. J. Gomez, The American Society of Mechanical Engineers
J. Greenslade, Industrial Fasteners Institute
J. J. Grey, Contributing Member, Fastener Consulting Services, Inc.
B. Hasiuk, Contributing Member, Defense Supply Center
A. Herskovitz, Consultant
J. Hubbard, Leland-Powell Fasteners, Inc.
J. Jennings, Contributing Member, Naval Surface Warfare Center
W. H. King, Porteous Fastener Co.
J. F. Koehl, Contributing Member, Spirol International Corp.
W. H. Kopke, Consultant
W. J. Lutkus, Emhart Technologies
D. A. McCrindle, Canadian Fasteners Institute
M. D. Prasad, Contributing Member, Global M&F Solutions, Inc.
S. Savoji, ITW Medalist
W. R. Scovel, Contributing Member, BGM Fastener Co., Inc.
Q. M. Smith III, Oregon Department of Transportation
W. R. Stevens, Ramco
R. D. Strong, GM Vehicle Engineering Center
S. W. Vass, Consultant
C. B. Wackrow, Contributing Member, MNP Corp.
C. B. Williamson, Fastenal Co.
C. J. Wilson, Consultant
V. Cartina, Consultant
D. A. Clever, Consultant
A. P. Cockman, Ford Motor Co.
C. A. Dugal, TSP
B. A. Dusina, Federal Screw Works
M. A. Elmi, Consultant
J. S. Foote, Trade Association Management, Inc.
D. S. George, ND Industries
A. Herskovitz, Consultant
M. W. Holubec, Electric Boat Corp.
J. Hubbard, Leland-Powell Fasteners, Inc.
J. Jennings, Contributing Member, Naval Surface Warfare Center
W. H. King, Porteous Fastener Co.
J. F. McCarrick, Defense Supply Center Philadelphia
D. A. McCrindle, Canadian Fasteners Institute
R. B. Meade, Atrona Material Testing Laboratories, Inc.
S. Savoji, ITW Medalist
R. M. Serabin, Freundlich Supply Co.
D. F. Sharp, GMS Structural Engineers
G. M. Simpson, Semblex Corp.
Q. M. Smith III, Oregon Department of Transportation
W. R. Stevens, Ramco
R. D. Strong, GM Vehicle Engineering Center
R. L. Tennis, Consultant
S. W. Vass, Consultant
C. B. Wackrow, MNP Corp.
K. Westphal, Kamax
W. K. Wilcox, Consultant
C. J. Wilson, Consultant
CORRESPONDENCE WITH THE B18 COMMITTEE

General. ASME Standards are developed and maintained with the intent to represent the consensus of concerned interests. As such, users of this Standard may interact with the Committee by requesting interpretations, proposing revisions, and attending Committee meetings. Correspondence should be addressed to:

Secretary, B18 Standards Committee
The American Society of Mechanical Engineers
Three Park Avenue
New York, NY 10016-5990
http://go.asme.org/Inquiry

Proposing Revisions. Revisions are made periodically to the Standard to incorporate changes that appear necessary or desirable, as demonstrated by the experience gained from the application of the Standard. Approved revisions will be published periodically.

The Committee welcomes proposals for revisions to this Standard. Such proposals should be as specific as possible, citing the paragraph number(s), the proposed wording, and a detailed description of the reasons for the proposal, including any pertinent documentation.

Proposing a Case. Cases may be issued for the purpose of providing alternative rules when justified, to permit early implementation of an approved revision when the need is urgent, or to provide rules not covered by existing provisions. Cases are effective immediately upon ASME approval and shall be posted on the ASME Committee Web page.

Requests for Cases shall provide a Statement of Need and Background Information. The request should identify the standard, the paragraph, figure or table number(s), and be written as a Question and Reply in the same format as existing Cases. Requests for Cases should also indicate the applicable edition(s) of the standard to which the proposed Case applies.

Interpretations. Upon request, the B18 Standards Committee will render an interpretation of any requirement of the Standard. Interpretations can only be rendered in response to a written request sent to the Secretary of the B18 Standards Committee.

The request for an interpretation should be clear and unambiguous. It is further recommended that the inquirer submit his/her request in the following format:

Subject: Cite the applicable paragraph number(s) and the topic of the inquiry.
Edition: Cite the applicable edition of the Standard for which the interpretation is being requested.
Question: Phrase the question as a request for an interpretation of a specific requirement suitable for general understanding and use, not as a request for an approval of a proprietary design or situation. The inquirer may also include any plans or drawings that are necessary to explain the question; however, they should not contain proprietary names or information.

Requests that are not in this format may be rewritten in the appropriate format by the Committee prior to being answered, which may inadvertently change the intent of the original request.

ASME procedures provide for reconsideration of any interpretation when or if additional information that might affect an interpretation is available. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME Committee or Subcommittee. ASME does not "approve," "certify," "rate," or "endorse" any item, construction, proprietary device, or activity.

Attending Committee Meetings. The B18 Standards Committee regularly holds meetings, which are open to the public. Persons wishing to attend any meeting should contact the Secretary of the B18 Standards Committee.
FASTENERS FOR USE IN STRUCTURAL APPLICATIONS

1 INTRODUCTORY NOTES

1.1 Scope

1.1.1 This Standard covers the complete general and dimensional data for five products in the inch series recognized as an American National Standard. These five structural products include

(a) Heavy Hex Structural Bolts: ASTM A 325 and ASTM A 490
(b) Heavy Hex Nuts: ASTM A 563 and ASTM A 194
(c) Hardened Steel Washers; Circular, Circular Clipped, and Beveled: ASTM F 436
(d) Compressible Washer-Type Direct Tension Indicators: ASTM F 959
(e) Twist-Off-Type Tension Control Structural Bolts: Heavy Hex and Round: ASTM F 1852 and ASTM F 2280

1.1.2 The inclusion of dimensional data in this Standard is not intended to imply that all products described herein are stock production sizes. Consumers should consult with suppliers concerning lists of available stock production sizes.

1.2 Dimensions

All dimensions in this Standard are in inches, unless stated otherwise, and apply to an unplated or uncoated product. When plating or coating is specified, the finished product dimensions shall be as agreed upon between supplier and purchaser. Symbols specifying geometric characteristics are in accord with ASME Y14.5.

1.3 Options

Options, where specified, shall be at the discretion of the supplier, unless otherwise agreed upon by the purchaser with the manufacturer or distributor.

1.4 Terminology

For definitions of terms relating to fastener dimensional or component features used in this Standard, refer to ASME B18.12.

1.5 Referenced Standards

Unless otherwise specified, the referenced Standard shall be the most recent issue at the time of order placement. The following is a list of publications referenced in this Standard.

ASME B1.1, Unified Inch Screw Threads (UN and UNR Thread Form)
ASME B1.2, Gages and Gaging for Unified Inch Screw Threads
ASME B1.3, Screw Thread Gaging Systems for Dimensional Acceptability — Inch and Metric Screw Threads (UN, UNR, UNJ, M, and MJ)
ASME B18.2.1, Square and Hex Bolts and Screws (Inch Series)
ASME B18.2.2, Square and Hex Bolts and Screws (Inch Series)
ASME B18.2.9, Straightness Gage and Gaging for Bolts and Screws
ASME B18.12, Glossary of Terms for Mechanical Fasteners
ASME B18.18.2, Inspection and Quality Assurance for High-Volume Machine Assembly Fasteners
ASME B18.24, Part Identifying Number (PIN) Code System Standard for B18 Fastener Products
ASME Y14.5, Dimensioning and Tolerancing
Publisher: The American Society of Mechanical Engineers (ASME), Three Park Avenue, New York, NY 10016-5990; Order Department: 22 Law Drive, Box 2300, Fairfield, NJ 07007-2300 (www.asme.org)

ASTM A 194/A 194M, Carbon and Alloy Steel Nuts for Bolts for High Pressure or High Temperature Service or Both
ASTM A 325, Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength
ASTM A 490, Structural Bolts, Alloy Steel, Heat Treated, 150 ksi Minimum Tensile Strength
ASTM A 563M, Carbon and Alloy Steel Nuts [Metric]
ASTM B 695, Coatings of Zinc Mechanically Deposited on Iron and Steel
ASTM F 436, Hardened Steel Washers
ASTM F 788/F 788M, Surface Discontinuities of Bolts, Screws, and Studs
ASTM F 812/F 812M, Surface Discontinuities of Nuts, Inch and Metric
ASTM F 959, Compressible-Washer-Type Direct Tension Indicators for Use With Structural Fasteners
ASTM F 1852, “Twist Off” Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength
ASTM F 2280, “Twist Off” Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 150 ksi Minimum Tensile Strength
ASTM F 2329, Zinc Coating, Hot-Dip, Requirements for Application to Carbon and Alloy Steel Bolts, Screws, Washers, Nuts, and Special Threaded Fasteners
Table 1 Dimensions of Heavy Hex Structural Bolts

<table>
<thead>
<tr>
<th>Nominal Size or Basic Product Diameter (Note 1)</th>
<th>Body Diameter, E (Note 2)</th>
<th>Width Across Flats, F (Note 3)</th>
<th>Width Across Corners, G (Note 4)</th>
<th>Head Height, H (Note 5)</th>
<th>Radius of Fillet, R (Note 6)</th>
<th>Thread Length, L_T (Note 7)</th>
<th>Transition Length, L_T (Note 8)</th>
<th>Maximum Total Runout of Bearing Surface, FIM (Note 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>0.500 0.515 0.482</td>
<td>7/6</td>
<td>0.875 0.850 1.010 0.969</td>
<td>5/16</td>
<td>0.323 0.302 0.031 0.009</td>
<td>1.00</td>
<td>0.19</td>
<td>0.016</td>
</tr>
<tr>
<td>5/32</td>
<td>0.625 0.642 0.605</td>
<td>1/16</td>
<td>1.062 1.031 1.227 1.175</td>
<td>2/32</td>
<td>0.403 0.378 0.062 0.021</td>
<td>1.25</td>
<td>0.22</td>
<td>0.019</td>
</tr>
<tr>
<td>1/4</td>
<td>0.750 0.768 0.729</td>
<td>1/4</td>
<td>1.250 1.212 1.443 1.383</td>
<td>5/32</td>
<td>0.483 0.455 0.062 0.021</td>
<td>1.38</td>
<td>0.25</td>
<td>0.022</td>
</tr>
<tr>
<td>5/32</td>
<td>0.975 0.989 0.452</td>
<td>1/16</td>
<td>1.438 1.394 1.669 1.589</td>
<td>3/32</td>
<td>0.563 0.531 0.062 0.031</td>
<td>1.50</td>
<td>0.28</td>
<td>0.025</td>
</tr>
<tr>
<td>1/2</td>
<td>1.000 1.022 0.976</td>
<td>1/6</td>
<td>1.625 1.575 1.876 1.796</td>
<td>3/32</td>
<td>0.627 0.591 0.093 0.062</td>
<td>1.75</td>
<td>0.31</td>
<td>0.028</td>
</tr>
<tr>
<td>5/32</td>
<td>1.125 1.149 1.098</td>
<td>1/16</td>
<td>1.812 1.756 2.093 2.002</td>
<td>1/16</td>
<td>0.718 0.658 0.093 0.062</td>
<td>2.00</td>
<td>0.34</td>
<td>0.032</td>
</tr>
<tr>
<td>1/2</td>
<td>1.250 1.277 1.233</td>
<td>2/6</td>
<td>2.000 1.938 2.309 2.209</td>
<td>2/32</td>
<td>0.813 0.749 0.093 0.062</td>
<td>2.00</td>
<td>0.38</td>
<td>0.035</td>
</tr>
<tr>
<td>5/32</td>
<td>1.375 1.404 1.345</td>
<td>2/16</td>
<td>2.188 2.119 2.526 2.416</td>
<td>2/16</td>
<td>0.878 0.810 0.093 0.062</td>
<td>2.25</td>
<td>0.44</td>
<td>0.038</td>
</tr>
<tr>
<td>1/2</td>
<td>1.500 1.531 1.470</td>
<td>2/16</td>
<td>2.375 2.300 2.742 2.622</td>
<td>1/16</td>
<td>0.974 0.902 0.093 0.062</td>
<td>2.25</td>
<td>0.44</td>
<td>0.041</td>
</tr>
</tbody>
</table>

GENERAL NOTE: See additional requirements in section 2.

NOTES:
(1) See para. 2.4.1.
(2) See paras. 2.1.12 and 2.1.3.
(3) See para. 2.1.4.
(4) See para. 2.1.10.2.
(5) See para. 2.1.6.

Publisher: American Society for Testing and Materials (ASTM International), 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959 (www.astm.org)

2 HEAVY HEX STRUCTURAL BOLTS: ASTM A 325 AND ASTM A 490

2.1 Heavy Hex Structural Bolt Dimensions

Bolts shall conform to the dimensions given in Table 1. Formulas for heavy hex structural bolts are given in the Appendix of ASME B18.2.1.

2.1.1 Top of Head. Top of head shall be full form and chamfered or rounded with the diameter of chamfer circle, or start of rounding being equal to the maximum width across flats within a tolerance of −15% of the maximum across flats dimension.

2.1.2 Width Across Flats. The width across flats of heads shall be the distance measured perpendicular to the axis of the overall product between the two opposite sides of the head.

2.1.3 Head Taper. The maximum width across flats shall not be exceeded. No transverse section through the head between 25% and 75% of actual head height, as measured from the bearing surface, shall be less than the minimum width across flats.

2.1.4 Head Height. The head height shall be that overall distance measured parallel to the axis of the product from the top of the head to the bearing surface.
and shall include the thickness of the washer face. Raised grade and manufacturer’s identification are excluded from head height.

2.1.5 True Position of Head. The head shall be located at true position with respect to the body within a tolerance zone having a diameter equivalent to 6% of the maximum width across flats at maximum material condition. For measurement purposes, hold the body a distance under the head equal to one diameter.

2.1.6 Bearing Surface. Bearing surface shall be flat and washer faced. However, a die seam across the bearing face shall be permissible. Diameter of washer face shall be equal to the maximum width across flats within a tolerance of −10%.

 Thickness of the washer face shall not be less than 0.015 in., nor greater than 0.025 in. for bolt sizes 3⁄4 in. and smaller, and not less than 0.015 in. nor greater than 0.035 in. for sizes larger than 3⁄4 in.

The plane of the bearing surface shall be perpendicular to the axis of the body within the full indicator movement (FIM) limits specified for total runout. Measurement of FIM shall extend as close to the periphery of the bearing surface as possible while the bolt is being held in a collet or other gripping device at a distance of one bolt diameter from the underside of the head. The angularity measurement shall be taken at a location to avoid interference from a die seam.

2.1.7 Bolt Length. The bolt length shall be the distance measured parallel to the axis of the product from the bearing surface of the head to the extreme end of the bolt including point. Bolts are normally furnished in 1⁄4 in. length increments.

2.1.8 Length Tolerance. Bolt length tolerances shall be as tabulated below

<table>
<thead>
<tr>
<th>Nominal Bolt Size, in.</th>
<th>Nominal Bolt Length Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Through 6 in.</td>
</tr>
<tr>
<td>1⁄2</td>
<td>−0.12</td>
</tr>
<tr>
<td>3⁄8</td>
<td>−0.12</td>
</tr>
<tr>
<td>5⁄32 through 1</td>
<td>−0.19</td>
</tr>
<tr>
<td>1⁄8 through 1⁄2</td>
<td>−0.25</td>
</tr>
</tbody>
</table>

2.1.9 Threads. Threads shall be cut or rolled in accordance with ASME B1.1 Unified Coarse, Class 2A. Structural bolts shall not be undersized to accommodate heavy coatings. Threads that have been hot-dipped or mechanically zinc coated shall meet the maximum limit requirements specified in ASTM A 325.

2.1.9.1 Thread Acceptability. Unless otherwise specified by the purchaser, gaging for screw thread dimensional acceptability shall be in accordance with Gaging System 21, as specified in ASME B1.3.

2.1.9.2 Thread Length. The length of thread on bolts shall be controlled by the grip gaging length, \(L_G \), and the body length, \(L_B \).

Grip gaging length, \(L_G \), is the distance measured parallel to the axis of bolt from the underhead bearing surface to the face of a noncounterbored or noncountersunk standard GO thread ring gage, assembled by hand as far as the thread will permit. It shall be used as the criterion for inspection. The maximum grip gaging length, as calculated and rounded to two decimal places for any bolt not threaded full length, shall be equal to the nominal bolt length minus the thread length (\(L_G = L \) nom. − \(L_T \)). For bolts that are threaded full length, \(L_G \) max. defines the unthreaded length under the head and shall not exceed the length of 2.5 times the thread pitch for sizes up to and including 1 in., and 3.5 times the thread pitch for sizes larger than 1 in. \(L_G \) max. represents the minimum design grip length of the bolt and may be used for determining thread availability when selecting bolt lengths even though usable threads may extend beyond this point (see Table 2).

Thread length, \(L_T \), is a reference dimension, intended for calculation purposes only, that represents the distance from the extreme end of the bolt to the last complete (full form) thread.

Body length, \(L_B \), is the distance measured parallel to the axis of the bolt from the underhead bearing surface to the last scratch of thread, or to the top of the extrusion angle. It shall be used as a criterion for inspection. The minimum body length, as calculated and rounded to two decimal places, shall be equal to the maximum grip gaging length minus the transition thread length (\(L_B \) min. = \(L_G \) max. − \(Y \)). Bolts of nominal lengths that have a calculated \(L_B \) min. length equal to or shorter than 2.5 times the thread pitch for sizes 1 in. and smaller, and 3.5 times the thread pitch for sizes larger than 1 in., shall be threaded for full length (see Table 2).

Transition thread length, \(Y \), is a reference dimension, intended for calculation purposes only, that represents the length of incomplete threads and tolerance on grip gaging length.

2.1.9.3 Incomplete Thread Diameter. The major diameter of incomplete thread shall not exceed the actual major diameter of the full form thread.

2.1.10 Point. Point shall be chamfered or rounded at the manufacturer’s option from approximately 0.016 in. below the minor diameter of the thread. The first full formed thread at major diameter is located a distance no greater than 2 times the pitch measured from the end of the bolt. This distance is to be determined by measuring how far the point enters into a cylindrical NOT GO major diameter ring gage (reference Gage, ASME B1.2).

2.1.11 Straightness. Shanks of bolts shall be straight within the following limits at MMC:
Table 2 Maximum Grip Gaging Lengths and Minimum Body Lengths
for Heavy Hex Structural Bolts

<table>
<thead>
<tr>
<th>Nominal Diameter and Thread Pitch</th>
<th>$\frac{1}{2}$–13</th>
<th>$\frac{3}{4}$–11</th>
<th>$\frac{5}{8}$–10</th>
<th>$\frac{7}{8}$–9</th>
<th>1–8</th>
<th>$\frac{7}{8}$–7</th>
<th>$\frac{5}{8}$–7</th>
<th>$\frac{3}{4}$–6</th>
<th>$\frac{1}{2}$–6</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_g Max.</td>
<td>L_g Min.</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>0.50</td>
<td>0.31</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>$\frac{3}{8}$</td>
<td>0.75</td>
<td>0.56</td>
<td>0.50</td>
<td>0.28</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>0.81</td>
<td>0.75</td>
<td>0.53</td>
<td>0.62</td>
<td>0.37</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>$\frac{5}{8}$</td>
<td>1.25</td>
<td>1.06</td>
<td>1.00</td>
<td>0.78</td>
<td>0.87</td>
<td>0.62</td>
<td>0.75</td>
<td>0.47</td>
<td>.</td>
</tr>
<tr>
<td>2$\frac{1}{4}$</td>
<td>1.50</td>
<td>1.31</td>
<td>1.25</td>
<td>1.03</td>
<td>1.12</td>
<td>0.87</td>
<td>1.00</td>
<td>0.72</td>
<td>0.75</td>
</tr>
<tr>
<td>2$\frac{1}{2}$</td>
<td>1.75</td>
<td>1.56</td>
<td>1.50</td>
<td>1.28</td>
<td>1.37</td>
<td>1.12</td>
<td>1.25</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>2.00</td>
<td>1.81</td>
<td>1.75</td>
<td>1.53</td>
<td>1.62</td>
<td>1.37</td>
<td>1.50</td>
<td>1.22</td>
<td>1.25</td>
</tr>
<tr>
<td>3$\frac{1}{4}$</td>
<td>2.25</td>
<td>2.06</td>
<td>2.00</td>
<td>1.78</td>
<td>1.87</td>
<td>1.62</td>
<td>1.75</td>
<td>1.47</td>
<td>1.50</td>
</tr>
<tr>
<td>3$\frac{3}{4}$</td>
<td>2.50</td>
<td>2.31</td>
<td>2.25</td>
<td>2.03</td>
<td>2.12</td>
<td>1.87</td>
<td>2.00</td>
<td>1.72</td>
<td>1.75</td>
</tr>
<tr>
<td>4</td>
<td>3.00</td>
<td>2.81</td>
<td>2.75</td>
<td>2.53</td>
<td>2.62</td>
<td>2.37</td>
<td>2.50</td>
<td>2.22</td>
<td>2.25</td>
</tr>
<tr>
<td>4$\frac{1}{4}$</td>
<td>3.25</td>
<td>3.06</td>
<td>3.00</td>
<td>2.78</td>
<td>2.87</td>
<td>2.62</td>
<td>2.75</td>
<td>2.47</td>
<td>2.50</td>
</tr>
<tr>
<td>4$\frac{3}{4}$</td>
<td>3.50</td>
<td>3.31</td>
<td>3.25</td>
<td>3.03</td>
<td>3.12</td>
<td>2.87</td>
<td>3.00</td>
<td>2.72</td>
<td>2.75</td>
</tr>
<tr>
<td>5</td>
<td>4.00</td>
<td>3.81</td>
<td>3.75</td>
<td>3.53</td>
<td>3.62</td>
<td>3.37</td>
<td>3.50</td>
<td>3.22</td>
<td>3.25</td>
</tr>
<tr>
<td>5$\frac{1}{4}$</td>
<td>4.25</td>
<td>4.06</td>
<td>4.00</td>
<td>3.78</td>
<td>3.87</td>
<td>3.62</td>
<td>3.75</td>
<td>3.47</td>
<td>3.50</td>
</tr>
<tr>
<td>5$\frac{3}{4}$</td>
<td>4.50</td>
<td>4.31</td>
<td>4.25</td>
<td>4.03</td>
<td>4.12</td>
<td>3.87</td>
<td>4.00</td>
<td>3.72</td>
<td>3.75</td>
</tr>
<tr>
<td>6</td>
<td>5.00</td>
<td>4.81</td>
<td>4.75</td>
<td>4.53</td>
<td>4.62</td>
<td>4.37</td>
<td>4.50</td>
<td>4.22</td>
<td>4.25</td>
</tr>
<tr>
<td>6$\frac{1}{4}$</td>
<td>5.25</td>
<td>5.06</td>
<td>5.00</td>
<td>4.78</td>
<td>4.87</td>
<td>4.62</td>
<td>4.75</td>
<td>4.47</td>
<td>4.50</td>
</tr>
<tr>
<td>6$\frac{3}{4}$</td>
<td>5.50</td>
<td>5.31</td>
<td>5.25</td>
<td>5.03</td>
<td>5.12</td>
<td>4.87</td>
<td>5.00</td>
<td>4.72</td>
<td>4.75</td>
</tr>
<tr>
<td>7</td>
<td>6.00</td>
<td>5.81</td>
<td>5.75</td>
<td>5.53</td>
<td>5.62</td>
<td>5.37</td>
<td>5.50</td>
<td>5.22</td>
<td>5.25</td>
</tr>
<tr>
<td>7$\frac{1}{4}$</td>
<td>6.25</td>
<td>6.06</td>
<td>6.00</td>
<td>5.78</td>
<td>5.87</td>
<td>5.62</td>
<td>5.75</td>
<td>5.47</td>
<td>5.50</td>
</tr>
<tr>
<td>7$\frac{3}{4}$</td>
<td>6.50</td>
<td>6.31</td>
<td>6.25</td>
<td>6.03</td>
<td>6.12</td>
<td>5.87</td>
<td>6.00</td>
<td>5.72</td>
<td>5.75</td>
</tr>
<tr>
<td>8</td>
<td>7.00</td>
<td>6.81</td>
<td>6.75</td>
<td>6.53</td>
<td>6.62</td>
<td>6.37</td>
<td>6.50</td>
<td>6.22</td>
<td>6.25</td>
</tr>
<tr>
<td>8$\frac{1}{4}$</td>
<td>7.25</td>
<td>7.06</td>
<td>7.00</td>
<td>6.78</td>
<td>6.87</td>
<td>6.62</td>
<td>6.75</td>
<td>6.47</td>
<td>6.50</td>
</tr>
<tr>
<td>8$\frac{3}{4}$</td>
<td>7.50</td>
<td>7.31</td>
<td>7.25</td>
<td>7.03</td>
<td>7.12</td>
<td>6.87</td>
<td>7.00</td>
<td>6.72</td>
<td>6.75</td>
</tr>
<tr>
<td>9</td>
<td>8.00</td>
<td>7.81</td>
<td>7.75</td>
<td>7.53</td>
<td>7.62</td>
<td>7.37</td>
<td>7.50</td>
<td>7.22</td>
<td>7.25</td>
</tr>
<tr>
<td>9$\frac{1}{4}$</td>
<td>8.25</td>
<td>8.06</td>
<td>8.00</td>
<td>7.78</td>
<td>7.87</td>
<td>7.62</td>
<td>7.75</td>
<td>7.47</td>
<td>7.50</td>
</tr>
<tr>
<td>9$\frac{3}{4}$</td>
<td>8.50</td>
<td>8.31</td>
<td>8.25</td>
<td>8.03</td>
<td>8.12</td>
<td>7.87</td>
<td>8.00</td>
<td>7.72</td>
<td>7.75</td>
</tr>
<tr>
<td>10</td>
<td>9.00</td>
<td>8.81</td>
<td>8.75</td>
<td>8.53</td>
<td>8.62</td>
<td>8.37</td>
<td>8.50</td>
<td>8.22</td>
<td>8.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal Length, L</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>$\frac{3}{8}$</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>$\frac{5}{8}$</td>
</tr>
<tr>
<td>2$\frac{1}{4}$</td>
</tr>
<tr>
<td>2$\frac{1}{2}$</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3$\frac{1}{4}$</td>
</tr>
<tr>
<td>3$\frac{3}{4}$</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>4$\frac{1}{4}$</td>
</tr>
<tr>
<td>4$\frac{3}{4}$</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>5$\frac{1}{4}$</td>
</tr>
<tr>
<td>5$\frac{3}{4}$</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>6$\frac{1}{4}$</td>
</tr>
<tr>
<td>6$\frac{3}{4}$</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>7$\frac{1}{4}$</td>
</tr>
<tr>
<td>7$\frac{3}{4}$</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>8$\frac{1}{4}$</td>
</tr>
<tr>
<td>8$\frac{3}{4}$</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>9$\frac{1}{4}$</td>
</tr>
<tr>
<td>9$\frac{3}{4}$</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>
(a) for bolts with nominal lengths to and including 12 in., the maximum camber shall be 0.006 in. per inch (0.006L) of bolt length.

(b) for bolts with nominal lengths over 12 in. to and including 24 in., the maximum camber shall be 0.008 in. per inch (0.008L) of length.

A suggested gage and gaging procedure for checking bolt straightness is given in ASME B18.2.9.

2.2 Materials and Processing

Chemical and mechanical properties of steel bolts shall conform to ASTM A 325 or ASTM A 490.

2.3 Finish

Unless otherwise specified, bolts shall be supplied with a plain (as-processed) finish, unplated or uncoated. If a finish is required, it shall conform to those approved in the applicable material standard.

2.4 Designation

(a) Heavy hex structural bolts shall be designated by the following data in the sequence shown: product name, specification, nominal size (fractional or decimal equivalent), threads per inch, product length (fractional or two decimal place equivalent), material (including specification and type where necessary), and protective finish (if required).

EXAMPLES:

(1) Heavy Hex Structural Bolt, ASME B18.2.6, 3⁄4 − 10 × 2 1⁄4, ASTM A 325 Type 1, Hot-Dip Zinc Coated per ASTM F 2329.

(2) Heavy Hex Structural Bolt, ASTM A 325 Type 1, 3⁄4 − 10 × 2 1⁄4, Hot-Dip Zinc Coated per ASTM F 2329.

(b) For a part identifying number (PIN), refer to ASME B18.24.

2.4.1 Nominal Size. Where specifying nominal size in decimals, zeros preceding the decimal shall be used and the fourth decimal place shall be omitted.

EXAMPLES:

(1) Heavy Hex Structural Bolt, ASME B18.2.6, 0.750 − 10 × 2.25, ASTM A 325 Type 1, Hot-Dip Zinc Coated per ASTM F 2329.

(2) Heavy Hex Structural Bolt, ASTM A 325 Type 1, 0.750 − 10 × 2.25, Hot-Dip Zinc Coated per ASTM F 2329.

2.5 Identification Symbols

Identification marking symbols on the tops of heads for bolt sizes 3⁄8 in. and smaller shall project not less than 0.005 in. above the surface nor more than 0.015 in. over the specified maximum head height. Bolt sizes larger than 3⁄8 in. shall project not less than the equivalent in inches of 0.0075 times the basic bolt diameter above the surface nor more than 0.030 in. over the specified maximum head height.

2.5.1 Grade Symbols. Each bolt shall be marked in accordance with the requirements of the applicable specification, ASTM A 325 or ASTM A 490.

2.5.2 Source Symbols. Each bolt shall be marked to identify the source (manufacturer or private label distributor) accepting the responsibility for conformance to this and other applicable specifications.

2.6 Workmanship

The allowable limits, inspection, and evaluation of the surface discontinuities, quench cracks, forging cracks, head bursts, shear bursts, seams, folds, thread laps, voids, tool marks, nicks, and gouges shall be in accordance with ASTM F 788/F 788M.

2.7 Quality Assurance

Unless otherwise specified, products shall be furnished in accordance with ASME B18.18.2.

3 HEAVY HEX NUTS: ASTM A 563 AND ASTM A 194

3.1 Nut Dimensions

Nuts shall conform to the dimensions given in Table 3. Heavy hex nut formulas for thickness, width across flats, and width across corners are given in Appendix II of ASME B18.2.2.

3.1.1 Width Across Flats. The width across flats of heavy hex nuts shall be the overall distance measured, perpendicular to the axis of the nut, between two opposite sides of the nut in accordance with Table 3. For milled-from-bar hex nuts, the nominal bar size used shall be the closest commercially available size to the specified basic width across flats of the nut. If the bar dimensions will not conform to the dimensions in Table 3, the manufacturers must obtain approval from the purchaser prior to manufacturing.

Maximum width across flats shall not be exceeded (except as stated in the previous paragraph). No transverse section through the nut between 25% and 75% of the actual nut thickness, as measured from the bearing surface, shall be less than the minimum width across flats.

3.1.2 Nut Thickness. The nut thickness shall be the overall distance measured parallel to the axis of the nut, from the top of the nut to the bearing surface, and shall include the thickness of the washer face where provided.

3.1.3 Tops and Bearing Surfaces. Nuts may be double chamfered or have a washer faced bearing surface and chamfered top.

The diameter of chamfer circle on double chamfered nuts and diameter of washer face shall be within the limits of the maximum width across flats and 95% of the minimum width across flats.

The tops of washer faced nuts shall be flat and the diameter of chamfer circle shall be equal to the maximum width across flats within a tolerance of −15%. The length of chamfer at hex corners shall be 5% to 15% of
Table 3 Dimensions of Heavy Hex Nuts for Use With Structural Bolts

<table>
<thead>
<tr>
<th>Nominal Size or Basic Major Diameter of Thread [Note (1)]</th>
<th>Width Across Flats, F [Note (2)]</th>
<th>Width Across Corners, G [Note (3)]</th>
<th>Thickness, H [Note (4)]</th>
<th>Total Runout of Bearing Face FIM, Heavy Hex Nuts, Specified Proof Load [Note (5)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 in.</td>
<td>0.500</td>
<td>0.875</td>
<td>0.850</td>
<td>1.010</td>
</tr>
<tr>
<td>5/8 in.</td>
<td>0.625</td>
<td>1.062</td>
<td>1.031</td>
<td>1.227</td>
</tr>
<tr>
<td>3/4 in.</td>
<td>0.750</td>
<td>1.250</td>
<td>1.212</td>
<td>1.443</td>
</tr>
<tr>
<td>7/8 in.</td>
<td>0.875</td>
<td>1.438</td>
<td>1.394</td>
<td>1.660</td>
</tr>
<tr>
<td>1 in.</td>
<td>1.000</td>
<td>1.625</td>
<td>1.575</td>
<td>1.876</td>
</tr>
<tr>
<td>1 1/8 in.</td>
<td>1.125</td>
<td>1.812</td>
<td>1.756</td>
<td>2.093</td>
</tr>
<tr>
<td>1 1/4 in.</td>
<td>1.250</td>
<td>2.000</td>
<td>1.938</td>
<td>2.309</td>
</tr>
<tr>
<td>1 3/8 in.</td>
<td>1.375</td>
<td>2.188</td>
<td>2.119</td>
<td>2.526</td>
</tr>
<tr>
<td>1 1/2 in.</td>
<td>1.500</td>
<td>2.375</td>
<td>2.300</td>
<td>2.742</td>
</tr>
</tbody>
</table>

GENERAL NOTE: See additional requirements in section 3. Complete table included in ASME B18.2.2.

NOTES:
(1) See para. 2.4.1.
(2) See para. 3.1.1.
(3) See para. 3.1.4.
(4) See para. 3.1.2.
(5) See para. 3.1.3.

the basic thread diameter. The surface of chamfer may be slightly convex or rounded.

Bearing surfaces shall be flat and, unless otherwise specified, shall be perpendicular to the axis of the threaded hole within the total runout (FIM) tabulated for the respective nut size, type, and strength level.

3.1.4 Corner Fill. A rounding or lack of fill at junction of hex corners with chamfer shall be permissible, provided the width across corners is within specified limits at and beyond a distance equal to 17.5% of the basic thread diameter from the chamfered faces.

3.1.5 Position of Hexagon to Tapped Hole. At maximum material condition, the nut body shall be located at true position with respect to the thread pitch diameter within a tolerance zone having a diameter equivalent to 4% of the maximum width across flats for 1 1/2 in. nominal size nuts or smaller.

3.1.6 Countersink. Tapped hole shall be countersunk on the bearing face or faces. The maximum countersink diameter shall be 1.08 times the thread basic (nominal) major diameter. No part of the threaded portion shall project beyond the bearing surface.

3.1.7 Threads. Threads shall be Class 2B in accordance with ASME B1.1.

3.1.7.1 Thread Gaging. Unless otherwise specified by the purchaser, gaging for screw thread dimensional acceptability shall be in accordance with Gaging System 21 as specified in ASME B1.3.

3.1.7.2 Overtapping. When nuts are zinc coated, they shall be overtapped after coating in accordance with the provisions of ASTM A 563.
3.2 Materials

Chemical and mechanical properties of heavy hex nuts shall conform to ASTM A 563 grades or ASTM A 194/A 194M, Grade 2H. The nut’s grade shall have a proof load capacity equal to or greater than the ultimate tensile strength of the bolt it will be used with.

3.3 Finish

Unless otherwise specified, nuts shall be supplied with a plain (as-processed) finish, unplated or uncoated. If a finish is required, it shall conform to those approved in the applicable material standard.

3.4 Designation

(a) Nuts shall be designated by the following data in the sequence shown: product name, specification, nominal size (fraction or decimal), threads per inch, material (including specification where necessary), and protective finish (if required).

EXAMPLE: Heavy Hex Nut, ASME B18.2.6, 1/2 – 13, ASTM A 563, Grade C, Plain Finish.

(b) For a part identifying number (PIN), refer to ASME B18.24.

3.5 Identification Symbols

3.5.1 Grade Symbols. Each nut shall be marked in accordance with the requirements of ASTM A 563 or ASTM A 194/A 194M, Grade 2H, as applicable.

3.5.2 Source Symbols. Each nut shall be marked to identify the source (manufacturer or private label distributor) accepting the responsibility for conformance to this and other applicable specifications.

3.6 Workmanship

Surface discontinuity limits shall be in accordance with ASTM F 812/F 812M.

3.7 Quality Assurance

Unless otherwise specified, products shall be furnished in accordance with ASME B18.18.2.

4 HARDENED STEEL WASHERS

4.1 Circular and Circular Clipped Washers

4.1.1 Circular and Circular Clipped Washer Dimensions. All circular and circular clipped washers shall conform to the dimensions given in Table 4.

4.1.2 Tolerances. Washer inside diameter, outside diameter, thickness, and edge distance shall be in accordance with Table 4. The deviation from flatness shall not exceed 0.010 in. per inch as the maximum deviation from a straight edge placed on the cut side. Circular runout of the outside diameter with respect to the hole shall not exceed 0.030 FIM. Burrs shall not project above immediately adjacent washer surface more than 0.010 in.

4.1.3 Finish. Unless otherwise specified, washers shall be supplied with a plain (as-processed) finish. If a finish is required, it shall conform to those approved in the applicable material standard.

4.1.4 Materials and Mechanical Properties. Materials and properties shall conform to the requirements specified in ASTM F 436.

4.1.5 Workmanship. Washers shall be free of excess mill scale, excess coatings, and foreign material on bearing surfaces. Arc and gas cut washers shall be free of metal splatter.

4.1.6 Designation

(a) Washers shall be designated by the following data in the sequence shown: product name, specification, nominal size (fraction or decimal), material specification, and protective finish (if required).

EXAMPLES:

(1) Hardened Steel Circular Washer, ASME B18.2.6, 11/8, ASTM F 436, Mechanical Zinc, ASTM B 695 Class 55, Type 1.

(2) Hardened Steel Circular Washer, ASME B18.2.6, ASTM F 436, Type 1, 11/8, Mechanical Zinc per ASTM B 695 Class 55.

(b) For a part identifying number (PIN), refer to ASME B18.24.

4.1.7 Identification Symbols. Grade and source marking and symbols shall conform to the requirements of ASTM F 436. The source marking is intended to identify the source accepting the responsibility for the conformance to this and other applicable specifications.

4.1.8 Quality Assurance. Unless otherwise specified, products shall be furnished in accordance with ASME B18.18.2.

4.2 Square and Clipped Square Beveled Washers

4.2.1 Square Beveled Washer Dimensions. All square beveled and clipped square beveled washers shall conform to the dimensions given in Table 5.

4.2.2 Tolerances. Tolerances for inside diameter for beveled washers shall be in accordance with Table 5. The flatness shall not exceed 0.010 in. as the maximum deviation from a straight edge placed on the cut side. Burrs shall not project above immediately adjacent washer surface more than 0.010 in. for smaller than 1 in. and 0.015 in. for 1 in to 1 1/2 in. The slope or taper in thickness shall be 0.98:6 to 1.02:6.

4.2.3 Finish. Unless otherwise specified, washers shall be supplied with a plain (as-processed) finish. If a finish is required, it shall conform to those approved in the applicable material standard.
Table 4 Dimensions for Hardened Steel Circular and Circular Clipped Washers

<table>
<thead>
<tr>
<th>Basic Size or Nominal Washer Size, in. [Note (1)]</th>
<th>Inside Diameter, I.D.</th>
<th>Outside Diameter, O.D.</th>
<th>Thickness, T</th>
<th>Minimum Distance, E [Note (2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1⁄2</td>
<td>0.531</td>
<td>0.531</td>
<td>0.563</td>
<td>1.063</td>
</tr>
<tr>
<td>5⁄8</td>
<td>0.688</td>
<td>0.688</td>
<td>0.720</td>
<td>1.313</td>
</tr>
<tr>
<td>3⁄4</td>
<td>0.813</td>
<td>0.813</td>
<td>0.845</td>
<td>1.469</td>
</tr>
<tr>
<td>7⁄8</td>
<td>0.938</td>
<td>0.938</td>
<td>0.970</td>
<td>1.750</td>
</tr>
<tr>
<td>1</td>
<td>1.063</td>
<td>1.063</td>
<td>1.085</td>
<td>2.000</td>
</tr>
<tr>
<td>1 1⁄8</td>
<td>1.188</td>
<td>1.188</td>
<td>1.251</td>
<td>2.250</td>
</tr>
<tr>
<td>1 1⁄4</td>
<td>1.375</td>
<td>1.375</td>
<td>1.438</td>
<td>2.500</td>
</tr>
<tr>
<td>1 1⁄2</td>
<td>1.500</td>
<td>1.500</td>
<td>1.563</td>
<td>2.750</td>
</tr>
<tr>
<td>1 1⁄4</td>
<td>1.625</td>
<td>1.625</td>
<td>1.688</td>
<td>3.000</td>
</tr>
</tbody>
</table>

NOTES:
(1) Nominal washer sizes are intended for use with comparable nominal bolt diameters.
(2) Clipped edge, E, shall not be closer than 0.875 times the nominal bolt diameter from the center of the washer.
Table 5 Dimensions of Hardened Beveled Washers With Slope or Taper in Thickness 1:6

<table>
<thead>
<tr>
<th>Nominal Washer Size</th>
<th>Inside Diameter, I.D.</th>
<th>Minimum Side Length, A</th>
<th>Thickness, T</th>
<th>Minimum Edge Distance, E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal</td>
<td>Min.</td>
<td>Max.</td>
<td>(Ref.)</td>
</tr>
<tr>
<td>1⁄2</td>
<td>0.500</td>
<td>0.531</td>
<td>0.531</td>
<td>0.563</td>
</tr>
<tr>
<td>5⁄8</td>
<td>0.625</td>
<td>0.688</td>
<td>0.688</td>
<td>0.720</td>
</tr>
<tr>
<td>3⁄4</td>
<td>0.750</td>
<td>0.813</td>
<td>0.813</td>
<td>0.845</td>
</tr>
<tr>
<td>7⁄8</td>
<td>0.875</td>
<td>0.938</td>
<td>0.938</td>
<td>0.970</td>
</tr>
<tr>
<td>1</td>
<td>1.000</td>
<td>1.125</td>
<td>1.125</td>
<td>1.188</td>
</tr>
<tr>
<td>1 1⁄8</td>
<td>1.125</td>
<td>1.250</td>
<td>1.250</td>
<td>1.313</td>
</tr>
<tr>
<td>1 1⁄4</td>
<td>1.250</td>
<td>1.375</td>
<td>1.375</td>
<td>1.438</td>
</tr>
<tr>
<td>1 1⁄2</td>
<td>1.375</td>
<td>1.500</td>
<td>1.500</td>
<td>1.563</td>
</tr>
<tr>
<td>1 1⁄4</td>
<td>1.500</td>
<td>1.625</td>
<td>1.625</td>
<td>1.688</td>
</tr>
</tbody>
</table>

NOTES:
1. Nominal washer sizes are intended for use with comparable nominal bolt diameters.
2. Nonclipped washers may be rectangular providing neither side dimension is less than A.
3. The thickness is measured on the centerline of the hole from the sloped to the flat surface.
4. Clipped edge, E, shall not be closer than 0.875 times the nominal bolt diameter from the center of the washer.
4.2.4 Materials and Mechanical Properties. Materials and properties shall conform to the requirements established by ASTM F 436.

4.2.5 Workmanship. Washers shall be free from seams, laps, loose scale, irregular surfaces, and any defects affecting serviceability.

4.2.6 Designation
(a) Washers shall be designated by the following data in the sequence shown: product name, specification, nominal washer size (fraction or decimal), material specification, and protective finish (if required).

EXAMPLES:
(1) Hardened Steel Square Washer, ASME B18.2.6, 1 1⁄8, ASTM F 436 Type 1, Mechanical Zinc, ASTM B 695 Class 55.
(2) Hardened Steel Square Washer, ASME B18.2.6, ASTM F 436 Type 1, 1 1⁄8, Mechanical Zinc, ASTM B 695 Class 55.

(b) For a part identifying number (PIN), refer to ASME B18.24.

4.2.7 Identification Symbols. Grade and source marking and symbols shall conform to the requirements of ASTM F 436. The source marking is intended to identify the source accepting the responsibility for conformance to this and other applicable specifications.

4.2.8 Quality Assurance. Unless otherwise specified, products shall be furnished in accordance with ASME B18.18.2.

5 COMPRESSIBLE WASHER-TYPE DIRECT TENSION INDICATORS

5.1 Direct Tension Indicator Dimensions

All washer-type direct tension indicators, Type 325 and 490, shall conform to the dimensions given in Table 6. Additional characteristics to accommodate the necessary features for silicone emitting type indicator washers are permissible.

5.2 Finish

Unless otherwise specified, direct tension indicators shall be supplied with a plain (as-processed) finish, unplated or uncoated. If a finish is required, it shall conform to those approved in the material standard.

5.3 Materials and Properties

Direct tension indicators shall conform to the requirements of ASTM F 959. Silicone emitting type indicator washers shall meet all of the performance requirements of ASTM F 959 and the dimensional requirements in this Standard.

5.4 Workmanship

The workmanship shall be smooth and free of burrs, laps, seams, excess mill scale, and foreign material on bearing surfaces or in protrusions, or other defects that would make them unsuitable for intended application.

5.5 Designation

(a) Compressible washer-type direct tension indicators shall be designated by the following data in the sequence shown: product name, specification, nominal size (fractional or decimal equivalent), Type (325 or 490), and finish (plain, zinc, or epoxy).

EXAMPLES:
(1) DTI, ASME B18.2.6, ASME B18.2.6, 1⁄2, per ASTM F 959, Type 325 Plain Finish.
(2) DTI, ASME B18.2.6, ASTM F 959, 1⁄2, Type 325, Plain Finish.

(b) For a part identifying number (PIN), refer to ASME B18.24.

5.6 Identification Symbols or Markings

Grade, lot number, and source marking symbols shall conform to the requirements of ASTM F 959.

5.7 Quality Assurance

Unless otherwise specified, products shall be furnished in accordance with ASME B18.18.2.

6 TWIST-OFF-TYPE TENSION CONTROL STRUCTURAL BOLTS: HEAVY HEX AND ROUND: ASTM F 1852 AND ASTM F 2280

6.1 Twist-Off-Type Tension Control Structural Bolt Dimensions

6.1.1 Heavy Hex Heads. Heavy hex head bolts shall conform to the dimensions included in Table 7.

6.1.1.1 Top of Head. The top of head shall be full formed and chamfered or rounded with the diameter of the chamfer circle or start of rounding being equal to the maximum width across flats within a tolerance of −15%.

6.1.1.2 Width Across Flats. The width across flats of heads shall be the distance measured perpendicular to the axis of the product, overall between two opposite sides of the head.

6.1.1.3 Head Taper. Maximum width across flats shall not be exceeded. No transverse section through the head between 25% and 75% of actual head height, as measured from the bearing surface, shall be less than the minimum width across flats.

6.1.1.4 Head Height. The head height shall be that overall distance measured parallel to the axis of the product from the top of the head to the bearing surface and shall include the thickness of the washer face. Raised grade and manufacturer’s identification are excluded from head height.

6.1.2 Round Heads. Round head dimensions shall be in accordance with Table 7.
Table 6 Dimensions for Compressible Washer-Type Direct Tension Indicators

<table>
<thead>
<tr>
<th>Direct Tension Indicator Size, in. [Note (1)]</th>
<th>Inside Diameter, Min.</th>
<th>Maximum Protrusion Tangential Diameter, Min.</th>
<th>Outside Diameter, C, Min.</th>
<th>Number of Protrusions (Equally Spaced)</th>
<th>Thickness, in. Without Protrusion, E</th>
<th>Thickness, in. With Protrusion, F</th>
<th>Number of Protrusions (Equally Spaced)</th>
<th>Thickness, in. Without Protrusion, E</th>
<th>Thickness, in. With Protrusion, F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>0.523 0.527</td>
<td>0.788</td>
<td>1.167 1.187</td>
<td>4</td>
<td>0.104 0.180</td>
<td>1.355 1.375</td>
<td>5</td>
<td>0.104 0.180</td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>0.654 0.658</td>
<td>0.956</td>
<td>1.355 1.375</td>
<td>4</td>
<td>0.126 0.220</td>
<td>1.605 1.625</td>
<td>5</td>
<td>0.126 0.220</td>
<td></td>
</tr>
<tr>
<td>1/4 option</td>
<td>0.786 0.790</td>
<td>1.125</td>
<td>1.605 1.625</td>
<td>5</td>
<td>0.126 0.230</td>
<td>1.730 1.750</td>
<td>6</td>
<td>0.142 0.240</td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>0.917 0.921</td>
<td>1.294</td>
<td>1.855 1.875</td>
<td>5</td>
<td>0.142 0.240</td>
<td>1.980 2.000</td>
<td>6</td>
<td>0.158 0.260</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1.048 1.052</td>
<td>1.463</td>
<td>1.980 2.000</td>
<td>6</td>
<td>0.158 0.270</td>
<td>2.230 2.250</td>
<td>7</td>
<td>0.158 0.270</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1.179 1.183</td>
<td>1.631</td>
<td>2.230 2.250</td>
<td>6</td>
<td>0.158 0.270</td>
<td>2.480 2.500</td>
<td>7</td>
<td>0.158 0.280</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1.311 1.315</td>
<td>1.800</td>
<td>2.480 2.500</td>
<td>7</td>
<td>0.158 0.270</td>
<td>2.730 2.750</td>
<td>8</td>
<td>0.158 0.280</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1.442 1.446</td>
<td>1.969</td>
<td>2.730 2.750</td>
<td>7</td>
<td>0.158 0.270</td>
<td>2.980 3.000</td>
<td>8</td>
<td>0.158 0.280</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1.573 1.577</td>
<td>2.138</td>
<td>2.980 3.000</td>
<td>8</td>
<td>0.158 0.270</td>
<td>3.230 3.250</td>
<td>9</td>
<td>0.158 0.280</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL NOTE: Additional requirements are in section 5.

NOTE:
(1) Nominal direct tension indicator sizes are intended for use with fasteners of the same nominal diameter.
Table 7 Dimensions of Twist-Off-Type Tension Control Structural Bolts: Heavy Hex Head and Round Head Configurations

Round Head — Rolled Thread

<table>
<thead>
<tr>
<th>Diameter of Thread</th>
<th>Width Across Flats, F [Note (1)]</th>
<th>Width Across Corners, G</th>
<th>Head Height, H [Note (2)]</th>
<th>Full-Size Body Dia., E</th>
<th>Head Dia., D [Note (3)]</th>
<th>Bearing Dia., C [Note (4)]</th>
<th>Radius of Fillet, R</th>
<th>Thread Length, L_T [Note (5)]</th>
<th>Spline Length, L_S [Note (6)]</th>
<th>Maximum Center of Spline Width Across Flats, S [Note (6)]</th>
<th>Maximum Center of Groove to First Fully Formed Thread, U [Note (5)]</th>
<th>Transition Thread Length, Y [Note (5)]</th>
<th>Maximum Total Runout of Bearing Surface FIM, [Note (4)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 x 12</td>
<td>0.500</td>
<td>0.875</td>
<td>1.010</td>
<td>0.551</td>
<td>1.126</td>
<td>0.890</td>
<td>0.031</td>
<td>1.00</td>
<td>0.50</td>
<td>0.192</td>
<td>0.19</td>
<td>0.012</td>
<td>0.016</td>
</tr>
<tr>
<td>5/32 x 12</td>
<td>0.625</td>
<td>1.062</td>
<td>1.031</td>
<td>0.643</td>
<td>1.313</td>
<td>1.102</td>
<td>0.062</td>
<td>1.25</td>
<td>0.60</td>
<td>0.227</td>
<td>0.22</td>
<td>0.019</td>
<td>0.019</td>
</tr>
<tr>
<td>3/32 x 12</td>
<td>0.750</td>
<td>1.250</td>
<td>1.212</td>
<td>0.768</td>
<td>1.580</td>
<td>1.338</td>
<td>0.062</td>
<td>1.38</td>
<td>0.65</td>
<td>0.250</td>
<td>0.25</td>
<td>0.022</td>
<td>0.022</td>
</tr>
<tr>
<td>7/32 x 12</td>
<td>0.875</td>
<td>1.438</td>
<td>1.394</td>
<td>0.895</td>
<td>1.880</td>
<td>1.535</td>
<td>0.062</td>
<td>1.50</td>
<td>0.72</td>
<td>0.278</td>
<td>0.28</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>1 x 12</td>
<td>1.000</td>
<td>1.625</td>
<td>1.575</td>
<td>1.022</td>
<td>2.158</td>
<td>1.771</td>
<td>0.093</td>
<td>1.75</td>
<td>0.80</td>
<td>0.313</td>
<td>0.31</td>
<td>0.031</td>
<td>0.028</td>
</tr>
<tr>
<td>1 1/8 x 7</td>
<td>1.125</td>
<td>1.812</td>
<td>1.756</td>
<td>1.169</td>
<td>2.375</td>
<td>1.991</td>
<td>0.093</td>
<td>2.00</td>
<td>0.90</td>
<td>0.367</td>
<td>0.34</td>
<td>0.032</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Heavy Hex Head — Rolled Thread

<table>
<thead>
<tr>
<th>Diameter of Thread</th>
<th>Width Across Flats, F [Note (1)]</th>
<th>Width Across Corners, G</th>
<th>Head Height, H [Note (2)]</th>
<th>Full-Size Body Dia., E</th>
<th>Head Dia., D [Note (3)]</th>
<th>Bearing Dia., C [Note (4)]</th>
<th>Radius of Fillet, R</th>
<th>Thread Length, L_T [Note (5)]</th>
<th>Spline Length, L_S [Note (6)]</th>
<th>Maximum Center of Spline Width Across Flats, S [Note (6)]</th>
<th>Maximum Center of Groove to First Fully Formed Thread, U [Note (5)]</th>
<th>Transition Thread Length, Y [Note (5)]</th>
<th>Maximum Total Runout of Bearing Surface FIM, [Note (4)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 x 12</td>
<td>0.500</td>
<td>0.875</td>
<td>1.010</td>
<td>0.551</td>
<td>1.126</td>
<td>0.890</td>
<td>0.031</td>
<td>1.00</td>
<td>0.50</td>
<td>0.192</td>
<td>0.19</td>
<td>0.012</td>
<td>0.016</td>
</tr>
<tr>
<td>5/32 x 12</td>
<td>0.625</td>
<td>1.062</td>
<td>1.031</td>
<td>0.643</td>
<td>1.313</td>
<td>1.102</td>
<td>0.062</td>
<td>1.25</td>
<td>0.60</td>
<td>0.227</td>
<td>0.22</td>
<td>0.019</td>
<td>0.019</td>
</tr>
<tr>
<td>3/32 x 12</td>
<td>0.750</td>
<td>1.250</td>
<td>1.212</td>
<td>0.768</td>
<td>1.580</td>
<td>1.338</td>
<td>0.062</td>
<td>1.38</td>
<td>0.65</td>
<td>0.250</td>
<td>0.25</td>
<td>0.022</td>
<td>0.022</td>
</tr>
<tr>
<td>7/32 x 12</td>
<td>0.875</td>
<td>1.438</td>
<td>1.394</td>
<td>0.895</td>
<td>1.880</td>
<td>1.535</td>
<td>0.062</td>
<td>1.50</td>
<td>0.72</td>
<td>0.278</td>
<td>0.28</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>1 x 12</td>
<td>1.000</td>
<td>1.625</td>
<td>1.575</td>
<td>1.022</td>
<td>2.158</td>
<td>1.771</td>
<td>0.093</td>
<td>1.75</td>
<td>0.80</td>
<td>0.313</td>
<td>0.31</td>
<td>0.031</td>
<td>0.028</td>
</tr>
<tr>
<td>1 1/8 x 7</td>
<td>1.125</td>
<td>1.812</td>
<td>1.756</td>
<td>1.169</td>
<td>2.375</td>
<td>1.991</td>
<td>0.093</td>
<td>2.00</td>
<td>0.90</td>
<td>0.367</td>
<td>0.34</td>
<td>0.032</td>
<td>0.032</td>
</tr>
</tbody>
</table>

NOTES:
1. See para. 6.1.1.2.
2. See para. 6.1.1.4.
3. See para. 6.1.2.2.
4. See para. 6.2.
5. See para. 6.10.
6. See para. 6.7.
7. See para. 6.8.
6.1.2.1 Top of Head. The top of the round head shall be spherical and may be underfilled within a circle approximating the nominal bolt diameter.

6.1.2.2 Head Diameter. The round head configuration shall have a head diameter in accordance with Table 7. The heads are not normally machined or trimmed, thus the circumference may be irregular with a rounded or flat edge.

6.2 Bearing Surface

The hex head washer face diameter shall be equal to the maximum width across flats within a tolerance of −10% and have a thickness not less than 0.015 in. nor greater than 0.025 in. for bolt sizes ¼ in. and smaller, and not less than 0.015 in. nor greater than 0.035 in. for sizes larger than ½ in.

The bearing surface shall be flat and perpendicular to the body within the FIM limits specified for total runout. Measurement of FIM shall extend as close to the periphery of the bearing surface as possible while the bolt is being held in a collet or other gripping device at a distance of one bolt diameter from the underside of the head.

A die seam across the bearing surface is not permissible.

6.3 Bolt Length

The bolt length shall be the distance measured parallel to the axis of the bolt from the bearing surface of the head to the center point of the groove through which shear will occur. Bolts are normally supplied in ¼ in. length increments.

6.4 Length Tolerance

Bolt length tolerances shall be as tabulated below:

<table>
<thead>
<tr>
<th>Nominal Bolt Size, in.</th>
<th>Through 6 in.</th>
<th>Over 6 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>¼</td>
<td>−0.12</td>
<td>−0.19</td>
</tr>
<tr>
<td>⅜</td>
<td>−0.12</td>
<td>−0.25</td>
</tr>
<tr>
<td>⅜ through 1</td>
<td>−0.19</td>
<td>−0.25</td>
</tr>
<tr>
<td>1⅛ through 1⅛</td>
<td>−0.25</td>
<td>−0.25</td>
</tr>
</tbody>
</table>

6.5 Straightness

Shanks of bolts shall be straight within the following limits at MMC:

(a) for bolts with nominal lengths to and including 12 in., the maximum camber shall be 0.006 in. per inch (0.006L) of bolt length.

(b) for bolts with nominal lengths over 12 in. to and including 24 in., the maximum camber shall be 0.008 in. per inch (0.008L) of length.

A suggested gage and gaging procedure for checking bolt straightness is given in ASME B18.2.9.

6.6 True Position of Head

The head shall be located at true position with respect to the body within a tolerance zone having a diameter equivalent to 6% of the maximum width across flats at maximum material condition. For measurement purposes, hold the body a distance under the head equal to one diameter.

6.7 Spline

The 12 spline dimensions and groove dimensions are reference dimensions and shall be at the discretion of the manufacturer. Users should consult with the supplier to assure wrenchability. Reference dimensions for the spline length and width across flats are given in Table 7.

6.8 Point

Unless otherwise specified, bolts need not be pointed. The distance, U, given in Table 7, is from the center of the groove to the first fully formed thread crest. This shall be determined by measuring how far the point enters into a cylindrical NOT GO major diameter ring gage.

6.8.1 Groove Diameter. The groove diameter, E1, is approximately equal to 80% of the thread maximum minor diameter (see Fig. 1). The actual E1 value shall be established by the manufacturer to assure proper function.

6.9 Threads

Threads shall be in the Unified Inch coarse series (UNRC Series), Class 2A. Acceptability of screw threads shall be determined based on System 21, ASME B1.3.

Unless otherwise specified, zinc coated bolts to be used with nuts that have been tapped oversize in accordance with ASTM A 563, shall have Class 2A threads before mechanically deposited zinc coating.

6.10 Thread Length

The length of thread on bolts shall be controlled by the grip gaging length, LG max., and the body length, LB min.

Grip gaging length, LG max., is the distance measured parallel to the axis of bolt from the underhead bearing
surface to the face of a noncounterbored or noncountersunk standard GO thread ring gage, assembled by hand as far as the thread will permit. It shall be used as the criterion for inspection. The maximum grip gaging length, as calculated and rounded to two decimal places for any bolt not threaded full length, shall be equal to the nominal bolt length minus the thread length \((L_G \text{ max.} = L \text{ nom.} - L_T)\). For bolts that are threaded full length, \(L_G \text{ max.}\) defines the unthreaded length under the head and shall not exceed the length of 2.5 times the thread pitch for sizes up to and including 1 in., and 3.5 times the thread pitch for sizes larger than 1 in. \(L_G \text{ max.}\) represents the minimum design grip length of the bolt and may be used for determining thread availability when selecting bolt lengths even though usable threads may extend beyond this point.

Thread length, \(L_T\), is a reference dimension, intended for calculation purposes only, that represents the distance from the extreme end of the bolt to the last complete (full form) thread.

Body length, \(L_B\), is the distance measured parallel to the axis of bolt from the underhead bearing surface to the last scratch of thread, or to the top of the extrusion angle. It shall be used as a criterion for inspection. The minimum body length, as calculated and rounded to two decimal places, shall be equal to the maximum grip gaging length minus the transition thread length \((L_B = L_G \text{ max.} - Y)\). Bolts of nominal lengths that have a calculated \(L_B\) length equal to or shorter than 2.5 times the thread pitch for sizes 1 in. and smaller, and 3.5 times the thread pitch for sizes larger than 1 in., shall be threaded for full length.

Transition thread length, \(Y\), is a reference dimension, intended for calculation purposes only, that represents the length of incomplete threads and tolerance on grip gaging length.

6.11 Incomplete Thread Diameter
The major diameter of incomplete thread shall not exceed the actual major diameter of the full form thread.

6.12 Material and Mechanical Properties
Chemical and mechanical properties shall conform to ASTM F 1852 or ASTM F 2280, as applicable.

6.13 Finish
Unless otherwise specified, bolts shall be supplied with a plain (as-processed) finish, unplated or uncoated. If a finish is required, it shall conform to those approved in the material standard.

6.14 Workmanship
Surface discontinuities shall be in conformance with ASTM F 788/F 788M.

6.15 Designation
(a) Twist-off-type tension control bolt assemblies include a bolt, nut, and washer, and are designated in the following manner: quantity, size, including bolt diameter and length (without the spline end), name of product, head style, Type (1 or 3), specification, coating, and special requirements (if applicable).

EXAMPLES:
(1) 2,500 assemblies, \(\frac{3}{4}\) in x 2, twist-off tension control bolt/nut/washer assemblies, round head, ASME B18.2.6, ASTM F 1852 Type I, ASME B18.2.6, mechanically zinc coated to ASTM B 695 Class 55.

(2) 2,500 assemblies, ASME B18.2.6, ASTM F 1852 Type I, \(\frac{3}{4}\) in x 2, twist-off tension control bolt/nut/washer assemblies, round head, mechanically zinc coated to ASTM B 695 Class 55.

(b) For a part identifying number (PIN), refer to ASME B18.24.

6.16 Product Marking
All components shall be marked in accordance with ASTM F 1852 or ASTM F 2280, as applicable.

6.16.1 Identification Symbols. Identification marking symbols on bolt heads shall be raised or indented at the manufacturer’s option, unless otherwise specified. Markings shall be legible to the unaided eye with the exception of corrective lenses. When raised, the height of the marking may not exceed 0.015 in. over the specified maximum head height for bolts \(\frac{5}{8}\) in. in. and smaller. For bolts larger than \(\frac{5}{8}\) in., the marking may not project more than 0.030 in. over the specified maximum head height. When indented, the depth of the marking shall not reduce the load-carrying capability of the fastener.

6.17 Quality Assurance
Unless otherwise specified, products shall be furnished in accordance with ASME B18.18.2.
B18 AMERICAN NATIONAL STANDARDS FOR BOLTS, NUTS, RIVETS, SCREWS,
WASHERS, AND SIMILAR FASTENERS

Small Solid Rivets ... B18.1.1-1972 (R2006)
Large Rivets ... B18.1.2-1972 (R2006)
Square and Hex Bolts and Screws (Inch Series) B18.2.1-1996 (R2005)
Square and Hex Nuts (Inch Series) B18.2.2-1987 (R2005)
Metric Hex Cap Screws B18.2.3M-1999 (R2005)
Metric Formed Hex Screws B18.2.3M-2001 (R2005)
Metric Heavy Hex Screws B18.2.3M-1979 (R2001)
Metric Hex Flange Screws B18.2.3M-2001 (R2005)
Metric Hex Bolts .. B18.2.3M-1979 (R2006)
Metric Heavy Hex Bolts B18.2.3M-1979 (R2006)
Metric Heavy Hex Structural Bolts B18.2.3M-1979 (R2006)
Metric Hex Lag Screws B18.2.3M-1981 (R2005)
Metric Heavy Hex Flange Screws B18.2.3M-9901 (R2006)
Metric Hex Nuts, Style 1 B18.2.4M-1M-2002 (R2007)
Metric Hex Nuts, Style 2 B18.2.4M-1M-2005 (R2007)
Metric Slotted Hex Nuts B18.2.4M-1M-2001 (R2005)
Metric Hex Flange Nuts B18.2.4M-1M-1982 (R2005)
Metric Hex Jam Nuts B18.2.4M-1M-1981 (R2005)
Metric Flanged 12-Point Head Screws B18.2.5M-1979 (R2003)
Fasteners for Use in Structural Applications B18.2.6-1910 (R2006)
Metric 12-Spline Flange Screws B18.2.7M-1M-2002 (R2007)
Clearance Holes for Bolt, Screws, and Studs. .. B18.2.8M-1999 (R2005)
Straightness Gage and Gaging for Bolts and Screws .. B18.2.9M-1979 (R2005)
Socket Cap, Shoulder, and Set Screws, Hex and Spline Keys (Inch Series) .. B18.3-2003 (R2008)
Socket Head Cap Screws (Metric Series) B18.3.1M-1986 (R2008)
Metric Series Hexagon Keys and Bits. B18.3.2M-1979 (R2008)
Hexagon Socket Head Shoulder Screws (Metric Series) .. B18.3.3M-1986 (R2008)
Hexagon Socket Button Head Cap Screws (Metric Series) ... B18.3.4M-1986 (R2008)
Hexagon Socket Flat Countersunk Head Cap Screws (Metric Series) ... B18.3.5M-1986 (R2008)
Metric Series Socket Set Screws B18.3.6M-1986 (R2008)
Round Head Bolts (Inch Series) B18.5.1-1990 (R2003)
Metric Round Head Short Square Neck Bolts .. B18.5.2M-1M-2006 (R2005)
Wood Screws (Inch Series) B18.6.1-1981 (R2008)
Slotted Head Cap Screws, Square Head Set Screws, and Slotted Headless Set Screws (Inch Series) ... B18.6.2-1998 (R2005)
Machine Screws and Machine Screw Nuts B18.6.3-1998 (R2008)
Thread Forming and Thread Cutting Tapping Screws and Metallic Drive Screws (Inch Series) B18.6.4-1998 (R2005)
Metric Thread-Forming and Thread-Cutting Tapping Screws B18.6.5M-2000 (R2005)
Metric Machine Screws B18.6.6M-1999 (R2005)
General Purpose Semi-Tubular Rivets, Full Tubular Rivets, Split Rivets and Rivet Caps B18.7-2007 (R2005)
and Grooved Pins (Metric Series) B18.8.2-2000 (R2005)
Plow Bolts .. B18.9-1996 (R2007)
Track Bolts and Nuts B18.10-1982 (R2005)
Glossary of Terms for Mechanical Fasteners ... B18.12-1996 (R2005)
Screw and Washer Assemblies — Sems (Inch Series) B18.13-1996 (R2008)
Screw and Washer Assemblies: Sems (Metric Series) ... B18.13M-1998 (R2003)
Forged Eyebolts B18.15-1985 (R2008)
Prevailing-Torque Type Steel Metric Hex Nuts and Hex Flange Nuts ... B18.16M-2004 (R2009)
<table>
<thead>
<tr>
<th>Standard</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serrated Hex Flange Locknuts 90,000 psi (Inch Series)</td>
<td>B18.16.4-2008</td>
</tr>
<tr>
<td>Nylon Insert Locknuts (Inch Series)</td>
<td>B18.16.6-2008</td>
</tr>
<tr>
<td>Inspection and Quality Assurance for General Purpose Fasteners</td>
<td>B18.18.1-2007</td>
</tr>
<tr>
<td>Inspection and Quality Assurance for High-Volume Machine Assembly Fasteners</td>
<td>B18.18.2-2009</td>
</tr>
<tr>
<td>Inspection and Quality Assurance for Special Purpose Fasteners</td>
<td>B18.18.3M-1987 (R2005)</td>
</tr>
<tr>
<td>Inspection and Quality Assurance for Fasteners for Highly Specialized Engineered Applications</td>
<td>B18.18.4M-1987 (R2005)</td>
</tr>
<tr>
<td>Inspection and Quality Assurance Plan Requiring In-Process Inspection and Controls</td>
<td>B18.18.5M-1998 (R2009)</td>
</tr>
<tr>
<td>Quality Assurance Plan for Fasteners Produced in a Third Party Accreditation System</td>
<td>B18.18.6M-1998 (R2009)</td>
</tr>
<tr>
<td>Double Coil Helical Spring Lock Washers for Wood Structures</td>
<td>B18.21.3-2008</td>
</tr>
<tr>
<td>Metric Plain Washers</td>
<td>B18.22M-1981 (R2005)</td>
</tr>
<tr>
<td>Plain Washers</td>
<td>B18.22.1-1965 (R2008)</td>
</tr>
<tr>
<td>Part Identifying Number (PIN) Code System for B18 Fastener Products</td>
<td>B18.24-2004</td>
</tr>
<tr>
<td>Square and Rectangular Keys and Keyways</td>
<td>B18.25.1M-1996 (R2008)</td>
</tr>
<tr>
<td>Woodruff Keys and Keyways</td>
<td>B18.25.2M-1996 (R2008)</td>
</tr>
<tr>
<td>Square and Rectangular Keys and Keyways: Width Tolerances and</td>
<td>B18.25.3M-1998 (R2008)</td>
</tr>
<tr>
<td>Deviations Greater Than Basic Size</td>
<td>B18.27-1998 (R2005)</td>
</tr>
<tr>
<td>Helical Coil Screw Thread Inserts — Free Running and Screw Locking (Inch Series)</td>
<td>B18.29.1-1993 (R2007)</td>
</tr>
<tr>
<td>Helical Coil Screw Thread Inserts: Free Running and Screw Locking (Metric Series)</td>
<td>B18.29.2M-2005</td>
</tr>
<tr>
<td>Metric Continuous and Double-End Studs</td>
<td>B18.31.1M-2008</td>
</tr>
<tr>
<td>Continuous and Double-End Studs</td>
<td>B18.31.2-2008</td>
</tr>
</tbody>
</table>

The ASME Publications Catalog shows a complete list of all the Standards published by the Society. For a complimentary catalog, or the latest information about our publications, call 1-800-THE-ASME (1-800-843-2763).