Standard Specification for
Anchor Bolts, Steel, 36, 55, and 105-ksi Yield Strength

This standard is issued under the fixed designation F1554; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

ε1 NOTE—Editorial corrections were made to Table 1, Table 2, and 6.7.1 in April 2016.

1. Scope*

1.1 This specification covers straight, bent, headed, and
headless anchor bolts (also known as anchor rods) made of
carbon, medium carbon boron, alloy, or high-strength low-
alloy steel. It provides for anchor bolts in three strength grades,
two thread classes, and in the diameters specified in Section 4.
The specification also covers all-thread rod for use in anchoring
to concrete. References to anchor bolts in this standard do
not necessarily exclude all-thread rod.

1.2 Anchor bolts are intended for anchoring structural
supports to concrete foundations. Such structural supports
include building columns, column supports for highway signs,
street lighting and traffic signals, steel bearing plates, and
similar applications.

1.3 Supplementary requirements are included to provide for
Grade 55 weldable steel, permanent manufacturers and grade
identification, and impact properties for Grades 55 and 105.

1.4 Zinc coating requirements are in Section 7.

1.5 Suitable nuts and washers are listed in 6.7. Washers are
detailed in 6.8.

1.6 This specification does not cover mechanical expansion
anchors, powder-activated nails or studs, or anchor bolts
fabricated from deformed bar.

1.7 The values stated in inch-pound units are to be regarded
as the standard. The values given in parentheses are for
information only.

2. Referenced Documents

2.1 ASTM Standards:

A6/A6M Specification for General Requirements for Rolled

A194/A194M Specification for Carbon Steel, Alloy Steel,
and Stainless Steel Nuts for Bolts for High Pressure or
High Temperature Service, or Both

A370 Test Methods and Definitions for Mechanical Testing
of Steel Products

A563 Specification for Carbon and Alloy Steel Nuts

A673/A673M Specification for Sampling Procedure for Im-
pact Testing of Structural Steel

A751 Test Methods, Practices, and Terminology for Chemi-

cal Analysis of Steel Products

B695 Specification for Coatings of Zinc Mechanically De-
posited on Iron and Steel

F436 Specification for Hardened Steel Washers

F606/F606M Test Methods for Determining the Mechanical
Properties of Externally and Internally Threaded
Fasteners, Washers, Direct Tension Indicators, and Rivets

F1789 Terminology for F16 Mechanical Fasteners

F2329/F2329M Specification for Zinc Coating, Hot-Dip,
Requirements for Application to Carbon and Alloy Steel
Bolts, Screws, Washers, Nuts, and Special Threaded
Fasteners

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

3.1.1 Unified Inch Screw Threads (UN and UNR Thread
Form)

3.1.3 Screw Thread Gaging Systems for Acceptability: Inch

3.18.2.1 Square, Hex, Heavy Hex, and Askew Head Bolts

3.18.2.2 Square and Hex Nuts

3.18.18 Quality Assurance for Fasteners

3.2 American Institute of Steel Construction:

B 1.1 Unified Inch Screw Threads (UN and UNR Thread

B 1.3 Screw Thread Gaging Systems for Acceptability: Inch

B 18.2.1 Square, Hex, Heavy Hex, and Askew Head Bolts

B 18.2.2 Square and Hex Nuts

B 18.18 Quality Assurance for Fasteners

3.3 ASME Standards:

B 1.1 Unified Inch Screw Threads (UN and UNR Thread

B 1.3 Screw Thread Gaging Systems for Acceptability: Inch

B 18.2.1 Square, Hex, Heavy Hex, and Askew Head Bolts

B 18.2.2 Square and Hex Nuts

B 18.18 Quality Assurance for Fasteners

* A Summary of Changes section appears at the end of this standard

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States

Designation: F1554 – 15ε1

Structural Steel Bars, Plates, Shapes, and Sheet Piling

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States

*1 This specification is under the jurisdiction of ASTM Committee F16 on
Fasteners and is the direct responsibility of Subcommittee F16.02 on Steel Bolts,
Nuts, Rivets and Washers.

approved in 1994. Last previous edition approved in 2007 as F1554 – 07aε1. DOI:
10.1520/F1554-15E01. 2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.

A6/A6M Specification for Steel Bolts, Structural Steel Bars, Structural Shapes, High
Strength Bolts, and Structural Plate

A194/A194M Specification for Carbon Steel, Alloy Steel, and Stainless Steel Nuts for
Bolts for High Pressure or High Temperature Service, or Both

A370 Test Methods and Definitions for Mechanical Testing of Steel Products

A563 Specification for Carbon and Alloy Steel Nuts

A673/A673M Specification for Sampling Procedure for Impact Testing of Structural Steel

A751 Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products

B695 Specification for Coatings of Zinc Mechanically Deposited on Iron and Steel

F436 Specification for Hardened Steel Washers

F606/F606M Test Methods for Determining the Mechanical Properties of Externally and Internally Threaded
Fasteners, Washers, Direct Tension Indicators, and Rivets

F1789 Terminology for F16 Mechanical Fasteners

F2329/F2329M Specification for Zinc Coating, Hot-Dip, Requirements for Application to Carbon and Alloy Steel
Bolts, Screws, Washers, Nuts, and Special Threaded Fasteners

3.2 American Institute of Steel Construction:

B 1.1 Unified Inch Screw Threads (UN and UNR Thread

B 1.3 Screw Thread Gaging Systems for Acceptability: Inch

B 18.2.1 Square, Hex, Heavy Hex, and Askew Head Bolts

B 18.2.2 Square and Hex Nuts

B 18.18 Quality Assurance for Fasteners

3.3 ASME Standards:

B 1.1 Unified Inch Screw Threads (UN and UNR Thread

B 1.3 Screw Thread Gaging Systems for Acceptability: Inch

B 18.2.1 Square, Hex, Heavy Hex, and Askew Head Bolts

B 18.2.2 Square and Hex Nuts

B 18.18 Quality Assurance for Fasteners

*1 This specification is under the jurisdiction of ASTM Committee F16 on
Fasteners and is the direct responsibility of Subcommittee F16.02 on Steel Bolts,
Nuts, Rivets and Washers.

approved in 1994. Last previous edition approved in 2007 as F1554 – 07aε1. DOI:
10.1520/F1554-15E01. 2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.

*1 This specification is under the jurisdiction of ASTM Committee F16 on
Fasteners and is the direct responsibility of Subcommittee F16.02 on Steel Bolts,
Nuts, Rivets and Washers.

approved in 1994. Last previous edition approved in 2007 as F1554 – 07aε1. DOI:
10.1520/F1554-15E01. 2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.
3.1.1 anchor bolt—steel fastener, typically made from bar stock or wire, and partially or fully threaded, one end of which is intended to be cast in concrete, while the opposite end projects from the concrete, for anchoring other material. The end cast in concrete may be either straight or provided with an uplift-resisting feature such as a bent hook, forged head, or a tapped or welded attachment.

3.1.2 producer—manufacturer of the steel bar stock or wire used for anchor bolts.

3.2 All other terms in this standard are used as defined in Terminology F1789.

4. Classification

4.1 Anchor bolts may be furnished in three grades (denoting minimum yield strength) and two classes (denoting thread class) as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Tensile Strength, ksi (MPa)</th>
<th>Description Yield Strength, min, ksi (MPa)</th>
<th>Diameter Range, in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>58–80 (400–558)</td>
<td>36 (248)</td>
<td>1⁄2 –4</td>
</tr>
<tr>
<td>55</td>
<td>75–95 (517–655)</td>
<td>55 (380)</td>
<td>1⁄2 –4</td>
</tr>
<tr>
<td>105</td>
<td>125–150 (862–1034)</td>
<td>105 (724)</td>
<td>1⁄2 –3</td>
</tr>
</tbody>
</table>

Class

1A anchor bolts with Class 1A threads

2A anchor bolts with Class 2A threads

5. Ordering Information

5.1 Orders should include:

5.1.1 Quantity.

5.1.2 Product name.

5.1.3 ASTM designation and year of issue.

5.1.4 Grade and class.

5.1.5 Copper content, if copper bearing steel is required.

5.1.6 Size and Dimensions—Nominal diameter and thread pitch, bolt length, thread length, head type (if required) and hook angle and hook length (if required).

5.1.7 Coatings—If required, the coating process and the length to be coated as measured from the exposed end. See Section 7.

5.1.8 Number of nuts. See 6.7.

5.1.9 Number of washers, and washer dimensions and material, if applicable. See 6.8.

5.1.10 Source inspection requirements, if any. See Section 15.

5.1.11 Color coding, if different than Section 18.

5.1.12 Test reports, if required. See Section 17.

5.1.13 Supplementary requirements, if required.

5.1.14 Special packaging requirements, if required.

5.2 All other information shall be in accordance with the requirements of Table 1 and Section 7.

5.3 When ordering a corrosion-resistant coating, it shall be specified as required by the manufacturer.

5.4 All other requirements not specifically mentioned in this section shall be in accordance with the requirements of Table 1 and Section 7.

Note 1—An example of a typical order follows: 5000 pieces; anchor bolts; ASTM F1554-15 Grade 55; Class 2A; 1.0-8 tpi. diameter by 15-in. long, 3.0-in. thread length, 4.0-in. hook; zinc-coated by hot dipping 5.0 in. from exposed end; each with one zinc-coated nut and washer; test report required; Supplementary Requirement S1 required.

6. Materials and Manufacture

6.1 Process—Steel for anchor bolts shall be made by the open-hearth, basic-oxygen, or electric-furnace process.

6.2 Threading—Threads shall be rolled, cut, or ground at the option of the manufacturer, unless otherwise specified.

6.3 Heat Treatment:

6.3.1 Grade 105 bolts (or their raw material) shall be heat treated. Heat treatment may be performed prior to or after bending or threading.

6.3.2 When heat treatment is performed, anchor bolts (or their raw material) shall be quenched in a liquid medium from above the transformation temperature and then tempered by reheating to a temperature not less than 800°F for Grade 55 and 1100°F for Grade 105.

6.4 Weldability—Grade 36 anchor bolts are considered weldable. See Note 2. At the manufacturer’s option, a weldable Grade 55 may be supplied when Grade 36 is specified. (Weldable steel for Grade 55 is provided for in Supplementary Requirement S1.) See 17.1.1.

6.5 Bending:

6.5.1 When required, bending may be performed by hot- or cold-bending, at the manufacturer’s option. The bent portion shall be free from cracks when examined at 10× magnification after bending. Any bending shall not reduce the cross-sectional area below that required in 10.3.

6.5.2 Hot bending temperatures for non-heat-treated anchor bolts shall not exceed 1300°F. Anchor bolts shall be allowed to air cool after bending.

6.5.3 The maximum hot bending temperature for heat-treated anchor bolts shall be less than 700°F for Grade 55 and less than 1000°F for Grade 105. Anchor bolts shall be allowed to air cool after bending.
6.6 Secondary Processing—If a party other than the manufacturer or producer performs heat treatment, coating, welding, machining, or another process which affects the anchor bolt properties, that party shall inspect or test the anchor bolts for the affected properties.
6.7 Nuts:

6.7.1 Recommended nuts from Specification A563 for each grade and diameter of the anchor bolt are as follows:

<table>
<thead>
<tr>
<th>Anchor Bolt Grade and Diameter, in.</th>
<th>Specification A563 Nut Specifications</th>
<th>Hot-Dip or Mechanical Zinc-coated in accordance with Section 7A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>Diameter, in.</td>
<td>Style</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>36</td>
<td>1/2 – 1 1/2</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>over 1 1/2</td>
<td>A</td>
</tr>
<tr>
<td>55</td>
<td>1/2 – 1 1/2</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>over 1 1/2</td>
<td>A</td>
</tr>
<tr>
<td>105</td>
<td>All</td>
<td>DH</td>
</tr>
</tbody>
</table>

See Note 3 and Section 7.

6.7.2 A listed nut may be substituted by a nut listed in Specifications A194/A194M or A563 having a proof load stress equal to or higher than the anchor bolt’s specified minimum tensile strength.

6.7.3 Nuts for use with zinc-coated anchor bolts shall be zinc-coated by the same process as the bolts. See Section 7 and Note 3.

6.8 Washers:

6.8.1 Unless the washer material and dimensions are otherwise specified in the inquiry and the order, washers conforming to the requirements of Specification F436, Type 1 shall be furnished. (See Note 4.)

6.8.2 Unless otherwise specified, when zinc-coated anchor bolts are specified, the washers shall be zinc coated in accordance with 7.1.4.

Note 2—Many factors potentially affect steel weldability; this specification limits carbon content for Grades 36 and 55 to help assure it. See Specification A6/A6M, Appendix X3 for more information. When anchor bolts are to be welded, welding procedures and techniques are of fundamental importance. Welding procedures suitable for the bolt’s grade, chemistry, condition (that is, hot-rolled, cold-drawn, or heat-treated), and intended use or service should be utilized.

Note 3—Zinc-coated nuts of the grade and style recommended in 6.7, when overtapped with the diametral allowance for the thread series listed in Specification A563, will develop the bolt tensile strength required in Table 2 of this specification. However, coated nuts with 8 UN threads in sizes 1-1/2 in. and larger, when overtapped, will not develop the tensile strength in Table 2 when the nut and associated bolt dimensions approach the minimum material limits of ASME B 1.1 and B 18.2.2, respectively.

Note 4—Washers used on anchor bolts or installed over base plate holes may require design consideration. (For guidance, refer to AISC Design Guide 1.)

7. Protective Coatings

7.1 Zinc, Hot Dip or Mechanically Deposited:

7.1.1 When zinc-coated anchor bolts are required, the purchaser shall specify the coating process, for example, hot dip, mechanically deposited, or no preference. When no preference is specified, the supplier may furnish bolts coated with either process. The supplier’s option is limited to one process per item, with no mixed processes in a lot.

7.1.2 When hot-dip zinc coated anchor bolts are specified, the anchor bolts and nuts shall be zinc-coated in accordance with the requirements of Specification F2329/F2329M.

7.1.3 When mechanically deposited zinc coated anchor bolts are provided, the anchor bolts and nuts shall be zinc-coated in accordance with the requirements of Specification B695, Class 55.

7.1.4 Unless otherwise specified, when zinc-coated washers are required, the washers shall be hot-dip zinc-coated in accordance with Specification F2329/F2329M, or mechanically deposited zinc coated in accordance with Specification B695, Class 55. The coating process for the washers need not be the same as that for the anchor bolts and nuts.

7.2 Other Coatings:

7.2.1 When indicated on the inquiry and purchase order, coatings other than those in 7.1 shall be as agreed upon by the purchaser and supplier.

8. Chemical Composition

8.1 Anchor bolts shall conform to the chemical compositions listed in Table 1.

8.2 Grade 55 ordered as weldable shall conform to the requirements specified in Supplementary Requirement S1.

8.3 Anchor bolts made from low-carbon martensitic steel shall not be permitted.

8.4 The application of heats of steel to which bismuth, selenium, tellurium, or lead has been added intentionally shall not be permitted.

9. Mechanical Properties

9.1 Finished anchor bolts (or the bar stock from which they are made, when tested as permitted in 14.2.6) shall conform to the tensile properties listed in Table 2 for axial tests performed on full-size specimens and drawn coupons or in Table 3 for tests performed on machined specimens. See 14.2.

10. Anchor Bolt Dimensions

10.1 Nominal Size—The nominal anchor bolt diameter shall be the same as the nominal thread diameter.

10.2 Body Diameter—Finished anchor bolts’ body diameters shall measure no less than the dimensions in Table 4.

10.3 Bend Section—The bend section of bent anchor bolts shall have a cross-sectional area not less than 90 % of the area of straight portions. The area in the bend shall be calculated by the following formula:

\[A_b = 0.25\pi D \cdot d \]

where:

<table>
<thead>
<tr>
<th>TABLE 3 Tensile Properties for Bars and Machined Specimens</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength, ksi</td>
<td>36</td>
</tr>
<tr>
<td>Yield strength, min, ksi (0.2 % offset)</td>
<td>36</td>
</tr>
<tr>
<td>Elongation in 8 in., min, % A</td>
<td>20</td>
</tr>
<tr>
<td>Elongation in 2 in., min, % A</td>
<td>23</td>
</tr>
<tr>
<td>Reduction of Area, min, %</td>
<td>40</td>
</tr>
</tbody>
</table>

*Elongation in 8 in. applies to bars. Elongation in 2 in. applies to machined specimens.
$A_b =$ cross-sectional area in the bend,
$D =$ major diameter, at the same cross section as, and at 90 degrees to, the minor diameter, and
$d =$ minor (or minimum) diameter at any point, generally in the plane of the bend.

10.4 Length:
10.4.1 The overall length of straight anchor bolts, or length to the inside of the hook if present, shall be the specified length ± 1/2 in. for lengths 24 in. or less, and ± 1 in. for longer bolts (see Fig. 1).
10.4.2 The length of hooks shall be the specified length, ±10% of the specified hook length, or ±1/2 in., whichever is greater.

10.5 Coated Length—When only a portion of the anchor bolt is required to be coated, the coated length shall not be less than that specified on the order.

10.6 Thread Length—The thread length shall be the specified length, +1.0 in., −0.00 in.

10.7 Bolt Heads—At the manufacturer’s option, headed bolts ordered under this specification shall be hex or heavy hex bolts conforming to ASME B18.2.1, unless otherwise specified.
10.8 Bend Angle—The bend angle of hooks shall be the specified angle, ±5°.

10.9 Other Dimensions—Unless otherwise specified, tolerances for dimensions other than those given in this section shall be in accordance with the manufacturer’s practice.

11. Thread Dimensions

11.1 Uncoated Anchor Bolts:
11.1.1 Unless otherwise specified, threads on Class 1A and 2A anchor bolts shall conform to Class 1A and 2A, Unified Coarse Thread Series of ASME B 1.1, respectively. When an anchor bolt class is not specified, Class 2A shall be furnished.
11.1.2 For diameters above 1.0 in, a purchaser may specify threads conforming to Class 2A, 8 UN Thread Series of ASME B1.1.

11.2 Zinc Coated Anchor Bolts:
11.2.1 Unless otherwise specified, zinc-coated anchor bolts threads shall conform to Class 1A or 2A, Unified Coarse Thread Series of ASME B 1.1 before coating. For diameters 1.125 through 1.50 in, a purchaser may specify threads conforming to Class 2A, 8 UN Thread Series of ASME B1.1 before coating (see Note 3). After zinc coating, the pitch diameter and major diameters shall not exceed the dimensions listed in Table 5.

11.3 Thread Gaging System—Thread acceptability shall be in accordance with ASME B 1.3 System 21, unless otherwise specified.

12. Workmanship

12.1 Anchor bolts shall be commercially smooth and free of manufacturing defects that would make them unsuitable for the intended application.

13. Number of Tests and Retests

13.1 Testing Responsibility—The anchor bolt manufacturer or supplier shall conduct the tests required to determine compliance with this specification, or shall provide evidence when requested that such tests have been conducted.

13.2 Test Frequency: The number of tests shall be in accordance with Table 6, with an acceptance number of zero discrepancies.

13.3 Retests—If a nonconforming characteristic is found in final inspection, the lot may be retested for that characteristic with a sample size four times the size of the original final acceptance sample. The acceptance criterion shall then be zero discrepancies.

13.4 Purchaser’s Inspection:
13.4.1 Except as noted in 13.4.2, if the purchaser discovers a nonconforming part, he/she may sample the lot for the nonconforming characteristic(s) in accordance with 13.2.
13.4.2 If the nonconforming characteristic in 13.4.1 is a thread dimension (other than thread length), and the anchor bolt grade and nominal diameter are within the ranges of 14.2.4, and the anchor bolt manufacturer or supplier contests the findings, the final determination of thread acceptability shall be as follows: a full-size axial tension test shall be made on the threaded anchor bolt and nut assembly, at the manufacturer’s or supplier’s expense, and the bolt shall develop the tensile load specified in Table 2. See Note 3.

14. Test Methods

14.1 Chemical Composition—Chemical analysis shall be conducted in accordance with Test Methods, Practices, and Terminology A751.

14.2 Tensile Tests:
14.2.1 Tensile tests on bar stock shall be conducted in accordance with Test Methods and Definitions A370.
14.2.2 Tensile tests on finished anchor bolts shall be conducted in accordance with the Axial Tension Test Method in F606/F606M.

14.2.3 Yield strength shall be determined by the 0.2% offset method.
14.2.4 Except as permitted in 14.2.6 and 14.2.7, finished anchor bolts in Grades 36 and 55 with nominal diameters of 1½ in. and less, and in Grades 105 with nominal diameters of 1¼ in. and less, shall be tested using full-size specimens.
14.2.5 Except as permitted in 14.2.6 and 14.2.7, finished anchor bolts with diameters larger than those specified in 14.2.4 shall preferably be tested full size. When equipment for full-size testing of these larger diameters is not available, standard 0.500-in. diameter machined test specimens shall be tested in accordance with Test Methods F606/F606M.
14.2.6 Steel producers’ tensile test reports from bar stock used for manufacturing anchor bolts may be used to qualify the finished anchor bolts’ properties, provided the finished anchor bolts have undergone no further heat treatment or cold-drawing after the bar stock test. Such bar stock tests may be based on full size or machined specimens. See 9.1.
14.2.7 Tensile tests on a manufacturer’s drawn sample coupons are permitted to qualify a finished anchor bolt’s

Table 5 Allowable Zinc Buildup on Coated Threads and Corresponding Thread Dimensions

<table>
<thead>
<tr>
<th>Nominal Diameter, in.</th>
<th>Threads/in.</th>
<th>Diametral Zinc Buildup, in.</th>
<th>Anchor Bolt Diameter, max. in.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Major</td>
</tr>
<tr>
<td>3/8</td>
<td>13</td>
<td>0.018</td>
<td>0.5165</td>
</tr>
<tr>
<td>7/32</td>
<td>11</td>
<td>0.020</td>
<td>0.6434</td>
</tr>
<tr>
<td>9/32</td>
<td>10</td>
<td>0.020</td>
<td>0.7682</td>
</tr>
<tr>
<td>1/2</td>
<td>8</td>
<td>0.024</td>
<td>0.8951</td>
</tr>
<tr>
<td>1/2</td>
<td>8</td>
<td>0.024</td>
<td>1.0220</td>
</tr>
<tr>
<td>1/2</td>
<td>7</td>
<td>0.024</td>
<td>1.1469</td>
</tr>
<tr>
<td>1/2</td>
<td>8</td>
<td>0.024</td>
<td>1.2719</td>
</tr>
<tr>
<td>1/2</td>
<td>7</td>
<td>0.024</td>
<td>1.3966</td>
</tr>
<tr>
<td>1/2</td>
<td>6</td>
<td>0.027</td>
<td>1.5246</td>
</tr>
<tr>
<td>1/2</td>
<td>5</td>
<td>0.050</td>
<td>1.6524</td>
</tr>
<tr>
<td>1/4</td>
<td>4.5</td>
<td>0.050</td>
<td>2.0471</td>
</tr>
<tr>
<td>1/2</td>
<td>4.5</td>
<td>0.050</td>
<td>2.2971</td>
</tr>
<tr>
<td>1/2</td>
<td>4</td>
<td>0.050</td>
<td>2.5469</td>
</tr>
<tr>
<td>1/2</td>
<td>4</td>
<td>0.050</td>
<td>2.7968</td>
</tr>
<tr>
<td>3/4</td>
<td>4</td>
<td>0.050</td>
<td>3.0468</td>
</tr>
<tr>
<td>3/4</td>
<td>4</td>
<td>0.050</td>
<td>3.2967</td>
</tr>
<tr>
<td>3/4</td>
<td>4</td>
<td>0.050</td>
<td>3.5467</td>
</tr>
<tr>
<td>3/4</td>
<td>4</td>
<td>0.050</td>
<td>3.7966</td>
</tr>
<tr>
<td>3/4</td>
<td>4</td>
<td>0.050</td>
<td>4.0466</td>
</tr>
</tbody>
</table>

Note: These values are the same as the overlap requirements for zinc-coated nuts given in Specification A563.
properties, provided (1) all heat-treatment or cold-drawing of
the coupon is complete, and (2) the finished anchor bolt
represented by the coupon undergoes no further heat treatment
or cold-drawing. In such cases, the grade and diameter require-
ments in 14.2.4 and 14.2.5 shall still apply.
14.2.8 When the shape of an anchor bolt (that is, a hook or
a long overall length) makes tensile testing impractical, it is
permissible for manufacturers to test a specimen cut from a
suitable straight portion of the anchor bolt. In such cases, the
grade and diameter requirements in 14.2.4 and 14.2.5 shall still
apply.
14.2.9 If bar stock or anchor bolts are tested by both
full-size and machined specimen methods, and a discrepancy
between the two methods exists, the full-size test shall govern.
14.3 Zinc Coating—Zinc coating thickness shall be deter-
mimed in accordance with the applicable coating specification.

15. Source Inspection
15.1 If specified in the inquiry and purchase order, an
inspector representing the purchaser shall have free entry to all
parts of the manufacturer’s works or supplier’s place of
business that concern the manufacture or supply of the material
ordered. The manufacturer or supplier shall afford the inspector
all reasonable facilities to satisfy him that the material is being
furnished in accordance with this specification. All tests and
inspections required by the specifications that are requested by
the purchaser’s representative shall be made before shipment,
but shall be conducted so as not to interfere unnecessarily with
the operation of the works.

16. Rejection and Rehearing
16.1 Material that fails to conform to the requirements of
this specification may be rejected. Rejection should be reported
to the manufacturer or supplier promptly and in writing. The
manufacturer or supplier may then retest per 13.3 for re-
approval.

17. Test Reports
17.1 When specified in the purchase order, the manufacturer
or supplier shall furnish the purchaser a test report that includes
the following:

18. Product Marking
18.1 Unless otherwise specified, the end of each anchor bolt
intended to project from the concrete shall be color coded to
identify the grade as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Blue</td>
</tr>
<tr>
<td>55</td>
<td>Yellow</td>
</tr>
<tr>
<td>55– Weldable*</td>
<td>Yellow (projecting end) & White (encased end)</td>
</tr>
<tr>
<td>105</td>
<td>Red</td>
</tr>
</tbody>
</table>

*See S1.

18.2 When other markings (such as Supplementary Re-
quirements S2 or S3) are required, it shall be specified on the
inquiry and purchase order.

19. Packaging and Package Marking
19.1 Packaging—Unless otherwise specified, packaging
shall be in accordance with the manufacturer’s practices. When
special packaging requirements are required, they shall be
defined at the time of the inquiry and order.
19.2 Package Marking:
19.2.1 Each shipping unit shall be marked in accordance
with the manufacturer’s practices. When requested in the

TABLE 6 Number of Tests for Final Inspection

<table>
<thead>
<tr>
<th>Test</th>
<th>999 and Fewer</th>
<th>1000 to 5000</th>
<th>5000 to 250,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical composition</td>
<td>One per heat, min</td>
<td>One per heat, min</td>
<td>One per heat, min</td>
</tr>
<tr>
<td>Tensile properties—bar stock</td>
<td>2 per heat</td>
<td>4 per heat</td>
<td>8 per heat</td>
</tr>
<tr>
<td>Tensile properties—anchor bolts</td>
<td>2 per heat</td>
<td>4 per heat</td>
<td>8 per heat</td>
</tr>
<tr>
<td>Body Diameter</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Head</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Hook or bend length</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Thread length</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Overall length</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Bend section</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Bend angle</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Coating thickness</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Coating length</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Workmanship</td>
<td>25</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

*Extracted from ASME B18.18.
inquiry and the purchase order, each shipping unit shall include or be marked plainly with the following information:
 19.2.1.1 ASTM designation and Grade;
 19.2.1.2 Size;
 19.2.1.3 Name and brand or trademark of the manufacturer or supplier;
 19.2.1.4 Number of pieces;
 19.2.1.5 Lot number;
 19.2.1.6 Purchase order number; and
 19.2.1.7 Country of origin, if required.

20. Keywords
 20.1 anchor bolts; anchor rods

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified in the purchase order or contract:

S1. Weldable Grade 55 Bars and Anchor Bolts

S1.1 The material described in this section is intended for welding. This supplemental section, by chemical composition restrictions and by a carbon equivalent formula, helps to provide assurance of weldability.

S1.2 Welding technique is of fundamental importance when bolts produced to this supplementary section are welded. See Note 2.

S1.3 These supplementary requirements supersede conflicting provisions of the general specification.

S1.4 Chemical Composition:

S1.4.1 Steel shall conform to the following limitations:

<table>
<thead>
<tr>
<th>Element</th>
<th>Heat Analysis</th>
<th>Product Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon, max, %</td>
<td>0.30</td>
<td>0.33</td>
</tr>
<tr>
<td>Manganese, max, %</td>
<td>1.35</td>
<td>1.41</td>
</tr>
<tr>
<td>Phosphorus, max, %</td>
<td>0.040</td>
<td>0.048</td>
</tr>
<tr>
<td>Sulfur, max, %</td>
<td>0.050</td>
<td>0.058</td>
</tr>
<tr>
<td>Silicon, max, %</td>
<td>0.50</td>
<td>0.55</td>
</tr>
</tbody>
</table>

S1.4.2 Carbon Equivalent—In addition to the requirements specified in S1.4.1, the analysis shall provide a carbon equivalent (CE) meeting the following requirements:

S1.4.2.1 For alloy or low-alloy steel, the carbon equivalent shall not exceed 0.45 % when calculated as follows:

\[CE = \% C + \frac{\% Mn}{6} + \frac{\% Cu}{40} + \frac{\% Ni}{20} + \frac{\% Cr}{10} - \frac{\% Mo}{50} - \frac{\% V}{10} \]

S1.4.2.2 For carbon steel, the carbon equivalent shall not exceed 0.40 % when calculated as follows:

\[CE = \% C + \frac{\% Mn}{4} \]

S1.5 Marking—See 18.1.

S2. Permanent Manufacturer’s Identification

S2.1 The end of the anchor bolt intended to project from the concrete shall be steel die stamped with the manufacturer’s identification. Such a mark shall be separate and distinct from any grade marks and shall be separated by at least two spaces when on the same level.

S3. Permanent Grade Identification

S3.1 Instead of color coding as specified in 18.1, the end of the anchor bolt intended to project from the concrete shall be steel die stamped with the grade identification as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>AB36</td>
</tr>
<tr>
<td>55</td>
<td>AB55</td>
</tr>
<tr>
<td>105</td>
<td>AB105</td>
</tr>
</tbody>
</table>

Such a mark shall be separate and distinct from any manufacturer’s marks and shall be separated by at least two spaces when on the same level. See Note S2.1.

S4. Grades 55 and 105 Charpy Absorbed-Energy Requirements

S4.1 When specified in the inquiry and the order, Grade 55 anchor bolts, when tested at +40°F, and Grade 105 anchor bolts, when tested at either +40°F or −20°F (as specified by the purchaser), shall meet the absorbed-energy requirements in Table S1.1.

S4.2 Tests shall be conducted in accordance with Test Methods and Definitions A370.

S4.3 Notch toughness tests shall be performed at the Test Frequency P (Piece Testing) of Specification A673/A673M on finished anchor bolts when the results of notch toughness tests are not available on bar stock.

S4.4 Notch toughness tests shall be performed at the Test Frequency H (Heat Lot Testing) of Specification A673/A673M on bar stock, except when heat treatment is performed after threading or bending, in which case the tests shall be those required in S4.3.

| Charpy V-Notch Energy Requirements |
|-----------------------------------|-----------------|
| Average for 3 Specimens, min, ft-lbf | Minimum for 1 Specimen, ft-lbf |
| 15 | 12 |

Note S2.1—Marking small diameters may not be practical. Consult the anchor bolt manufacturer for the minimum diameter that can be marked.
SUMMARY OF CHANGES

Committee F16 has identified the location of selected changes to this standard since the last issue (F1554–07a) that may impact the use of this standard. (Approved September 1, 2015.)

(1) Referenced all-thread rod specifically in scope.
(2) Additions and deletions to and consolidation of various sections (most notably, Sections 9, 13, and 14) to clarify tensile test requirements.
(3) Table 3 revised with new ROA requirements.
(4) Sections 6.4 and Note 2 (weldability), and 10.7 (bolt heads) added. References to welding cold-forged and cold-drawn material in S1.4 removed.
(5) Grade 36 carbon content lowered by 0.01% to help ensure weldability.
(6) References to D3951, metric diameter conversions, and diameters under ½ in. removed.
(7) Section 17 revised to remove reference to “certifications.”
(8) Section 18.1 revised to include marking colors from S1.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/